Department of Electrical Engineering
 Assignment
 Date: 13/04/2020

Course Details

Course Title:	Linear Circuit Analysis	Module:	2
Instructor:	SIR SOHAIL IMRAN	Total Marks:	

Student Details

Name: MUHAMMAD BILAL KHAN
Student ID: 16434

| (c) | Following figure depicts the current-voltage characteristic of three different
 resistive elements. Determine the resistance of each, assuming the voltage and
 current are defined in accordance with the passive sign convention. | Marks
 3 |
| :--- | :--- | :--- | :--- |
| | PLO1 | |

Page ${ }^{\prime}$!
Question Number 1
An

Find Current and power absorbed by the resistor.

To find current and power we have KVL rule.

$$
\begin{aligned}
& (-5)+v_{x}=0 \\
& r_{x}=5 v \\
& I=\frac{V}{R}=\frac{5}{10 \times 1000} \\
& I=0.5 \mathrm{~mA}
\end{aligned}
$$

we know

$$
\begin{gathered}
P=V I \\
(5)\left(0.5 \times 10^{-3}\right) \\
P=\frac{2.5 \times 10^{-3} \mathrm{w}}{}
\end{gathered}
$$

Find current and powe absorbed by resistor.

To find Current and power we use KVL rule.

$$
(5)+v_{x}=0
$$

To Find Current

$$
=\frac{-5}{10 \times 1000} \quad I=\frac{V}{R}
$$

$$
I=-0.5 \mathrm{~mA}
$$

To find power:-

$$
\begin{gathered}
P=V I \\
P=(-5)\left(-0.5 \times 10^{-3}\right) \\
P=2.5 \times 10^{-3} \mathrm{w}
\end{gathered}
$$

Cage $=$

$$
-(c)-
$$

Ans:- Circuit:-

To find current and power absorbed by the resistor wo have KYL rule. We know we have KUL riDe.

$$
\begin{array}{r}
-(-5 v)+v_{x}=0 \\
5 v+v_{x}=0 \\
v_{x}=-5 v
\end{array}
$$

To Hind Current:

$$
\begin{aligned}
I & =\frac{V}{R} \\
& =\frac{-5}{10 \times 1000} \\
I & =-0.5 \mathrm{~mA}
\end{aligned}
$$

To find poor: -

$$
\begin{gathered}
P=V I \\
P=(-5)\left(-0.5 \times 10^{-3}\right) \\
P=2.5 \times 10^{-3} \mathrm{\omega}
\end{gathered}
$$

$-(d)-$
Ans:- Cirenit: -

Find current and power:-Ans:- To find current and power we use $K V L$ rule.

$$
(-5 v)+v_{x}=0
$$

$$
v_{x}=5_{v}
$$

To find current.

$$
I=\frac{V}{R}
$$

$$
I=\frac{5}{10 \times 1000}
$$

$$
I=0.5 \mathrm{~mA}
$$

To find power:-

$$
\begin{gathered}
P=V I \\
P=(5)\left(0.5 \times 10^{-3}\right) \\
P=2.5 \times 10^{-3} \mathrm{~W}
\end{gathered}
$$

CPares
Ouestion Number 1
Paxt (c)
Ans:- 1st Graph:-
By using graph:

$$
\begin{aligned}
& \frac{\Delta I=0.05+0.05}{\Delta I}=\frac{0.1 \mathrm{~A}}{\Delta V}=5+\frac{0.05}{-5} \\
& R=? \\
& R=\frac{\Delta V}{\Delta I} \\
& \\
& =\frac{10}{0.1} \\
& R
\end{aligned}
$$

2 and G rept
that
By using graph, we see

$$
\begin{aligned}
& \Delta I=0 \\
& \Delta r=10 \mathrm{r} \\
& R=\frac{10}{0} \quad R=\text { undefined }
\end{aligned}
$$

3rd Graph $=$ =
see that

$$
\begin{aligned}
& \Delta V=0 \\
& \Delta I=0.1 \\
& R=\frac{\Delta V}{\Delta I}
\end{aligned}
$$

$$
=\frac{0}{0.1}
$$

$$
R=0 \Omega
$$

Question Number 2

In this circuit:-
-cit Nodes

- vil Elements

咲关 Branches

4 nodes
6 elements
10 branches.

- (et) ${ }^{3}-\operatorname{CiL} A$ TO $=P a t h$

$$
\text { B To D to } C \text { to } E=\text { path }
$$

C to E to D to B to A to $C=l o o p$ and path
C to D to B to A to C to $E=l o o p$ and p th

In this circuit:-

- (i) Nodes:-

4 Nodes
ci) Elements :5 elements

- (iii) Branches :9 branches

Poget\#
-(4) $\underline{=}$ (i) A To $b=P$ att
riiv $1, B$ to D to C to $E=$ patt coop riii) C to E to D to B to A to $C=$ Pateop $-C i{ }^{-i n}=C$ to D to B to A to C to $E=\operatorname{loop}$ patt.

Ouestion Number 2

- - $b)_{2}$

Question Number 2

Ans:- I_{C} is a collector current and I_{B} ${ }^{=}$is a base current.
So.

$$
\begin{gathered}
I_{B}=100 \mu \mathrm{~A}, \quad I_{C}=? \\
I_{C}=150 I_{B} \\
I_{C}=I_{E}+I_{B} \\
150 I_{B}=I_{E}+I_{B} \\
149 I_{B}=I_{E} \\
149 \times 100 \mu=I_{E} \\
I_{E}=14900 \mu \mathrm{~A} \\
=150 I_{B} \\
I_{C}=150 \times 100 \mu \\
I_{C}=15000 \mu \mathrm{~A}
\end{gathered}
$$

Question Number 3

$$
-(\underline{a})-
$$

Ans:-

In this Circuit diagram are
Find power.

$$
\begin{gathered}
P_{1}=I^{2} R \\
P_{1}=(5)^{2}(1000) \\
P_{1}=25 \times 10^{3} \mathrm{~W} \\
P_{2}=(5)^{2}(4.7 \mathrm{~K}) \\
P_{2}=(25)(4.7 \times 1000) \\
P_{2}=117.5 \mathrm{~kW}
\end{gathered}
$$

Total Bower $p_{1}=p_{1}+p_{2}+p_{3}$

$$
\begin{aligned}
& p_{3}=(3)^{2} \times 2.8 \times 1000 \\
& \frac{P_{3}=25.2 \mathrm{~K} \mathrm{\omega}}{\cot \mathrm{O} \text { power }} \\
& P_{T}=25 \mathrm{~kW}+117.5 \mathrm{k} \mathrm{\omega}+25.2 \mathrm{~K} \mathrm{\omega} \text {. } \\
& P_{T}=167.7 \mathrm{KW} \text {. }
\end{aligned}
$$

Page 1 \#

$$
\begin{gathered}
-(b)- \\
v_{1}=I_{1} R_{1} \\
V_{1}=\mathrm{kV}_{2}=I_{2} R_{2} \\
V_{2}=4.7 \mathrm{k} \times 5 \\
V_{2}=23.5 \mathrm{kV} \\
V_{3}=3 \times 2.8 \mathrm{k} \\
V_{3}=8.4 \mathrm{kV} \\
P_{1}=V_{1} I_{1} \\
P=(5 \mathrm{k})(5) \\
P_{1}=25 \mathrm{~kW} \\
P_{2}=V_{2} I_{2} .23 .5 \mathrm{k} \times 5 \\
P_{2}=23 \\
P_{2}=117.5 \mathrm{k} \mathrm{\omega} \\
P_{3}=V_{3} I_{3} \\
P_{3}=8.4 \mathrm{~K} \times 3 \\
-P_{3}=25.2 \times 10^{3} \mathrm{~m}
\end{gathered}
$$

Question Number 3

$$
-(b)
$$

Pins:- Find power $=P=$?
By using circuit diagram.
Let R_{1} and R_{2} are in parallel.
So,

$$
\begin{aligned}
\frac{1}{R_{e}} & =\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
\frac{1}{R_{e}} & =\frac{1}{3}+\frac{1}{15}=\frac{5+1}{15} \\
R_{e} & =\frac{5}{2} \Omega \\
\text { Let } R_{e} & =R_{1}
\end{aligned}
$$

Now?

$$
\begin{aligned}
& R_{e}=R_{1}+R_{2} \\
& R_{e}=\frac{5}{2}+\frac{6}{1} \\
& R_{e}=\frac{5+12}{2}=17 / 2
\end{aligned}
$$

$$
\begin{gathered}
V=I R_{e} \\
2=4 \times 17 / 2 \\
v=34 \mathrm{~V}
\end{gathered}
$$

for 15 ohm resistor.

$$
\begin{aligned}
& V_{1}=I_{1} R_{1} \\
& 34=I_{1} \times 15 \\
& 34 / 15=I_{1} \\
& I_{1}=2.26 \mathrm{~A} \\
& P=I^{2} R \\
& P=(2.26)(15) \\
& P=76.6 \mathrm{~W}
\end{aligned}
$$

