Department of Electrical Engineering Assignment

Date: 20/04/2020

Course Details

Course Title: Instructor:		Module: Total Marks:	<u>02</u> 30
	Student Details		

Name: HASEEB ULLAH Student ID: 16314

Q1.	(a)	Express the temperature of 139 °C on degree	Fahrenheit, Rankine and Kelvin scales.	Marks 06
	(b)	Derive the equation highlighting the work do constant temperature process.	ne by a gas or vapour in expanding for a	CLO 1 Marks 05 CLO 1
Q2.		Analyze the given figure and match column 1	with the correct option of column 2.	Marks 08
			700 K 500 K 300 K	CLO 1
		Column 1	Column 2	
		Process I	Adiabatic	
		Process II	Isobaric	
		Process III	Isochoric	
		Process IV	Isothermal	
Q3.	(a)	Hydrogen is compressed under a constant proreduced from 28 to 12 ft ³ . Calculate the work		Marks 07
				CLO 1
	(b)	Differentiate between enthalpy and entropy	using examples from daily life.	Marks 04
				CLO 1

	QUESTION #01 Page #01	
	(part a) Express the temperature of 139°C on degree Fahrenheit, Rankine and Kelvin Scales:	
	Express the temperature of 139°C on degree	
	Fahrenheit, Rankine and Kelvin Scales.	
	ALL WOLL	
	Given:-	
-	Temperature = 139 °C	
7	Required Data:-	
	Required Data:- Fahrenheit, F°=?	
7	Rankine R°=?	
2	kalvin g K°=?	
	Solution :-	
	Dogree fahrenheit.	
	formulg :-	
	Dogree Lahrenheit: formula:- $F^{\circ} = (1.8 \times C^{\circ}) + 32$	
	putting values of C°	
	$\begin{array}{rcl} & \text{putting values of } C^{\circ} \\ & F^{\circ} = (1 \cdot 8 \times 13 q) + 32 \\ & F^{\circ} = (350 \cdot 2) + 32 \\ & F^{\circ} = 282 \cdot 2 F^{\circ}. \end{array}$	
	$F^{\circ} = (350 \cdot 2) + 32$	
	$F^{\circ} = 282.2F^{\circ}$	
1		

Kelvin Scales: page #02 formula: $K^{\circ} = (c^{\circ} + 273)$ co putting values of $K^{\circ} = 139 + 273$ $k^{0} = 412k^{0}$ Rankine: ormula:-FOF 460) Putting value of Fo Ro = 282.27460 Rº 2 742.2R° Part #5 Derive the equation highlighting the work done by a gas or vapour in expanding for a constant temperature process. inlost done by a gas or vapour in expanding defend on the method by which expansion is perform.

as we know that	+	page #03
M2 fp SV	1	
Constant temperative		
$\begin{array}{c} constant temperature \\ inl = f^{\nu_{1}} pdv \\ as p1 = p2 v2 = p \\ as p1 = f_{v_{1}} c v dv \\ = c in vf_{v_{1}} vf_{v_{1}} \end{array}$		
as $p_{1z}p_{2v_{2}} = p$	176	
P	26/2	
INI= for c/v du		
$= C \ln v r$		
$= C \ln \left(\frac{v_2}{v_1} \right)$ $LALOYK = PIVI 9n (v_2)$		
LALOYK = PIVI 90 (V)	10)]	
0		
WUESTION #02		
(part a):-		
Hnalyze the give	n figure and m	atch column
Analyze the give 1 with the correction Column column	ict option of cold	2·
COLUMN COLUM	n 2	
Process I Ad		
Process TI (1) Process TI (1)		
Drocess II 1	0	
JUCESS IZ I.	sothermay	

page#04 Answer:ideal gas eq? - pv = NRT 150 banc process - constant .P Isochonic process - constant .V 1so thermal process - constant . T Adiabatic process - no exchange of heat or mass -NUESTION #03 part a):tydrogen is compressed under a constant pressure 5760 16/ft2 until its volume is reduced vom 28 to 12 ft. calculate the work done in comp-Yessing the gas. Solution :-6 P= 756016/ Ft2 V2z 28ft3 $V = 12ft^3$ Required: Inlock done 2? Solution is an constant pressure work work done = (p) V2 = V1 putting values: = 46 × 144 (28-12) = 40 × 144 (16) = 120,960ft-16f

	page #05
(Dart#b):-	
Dilleventiale Latimen	11 12 1
(20) Provide Detucer) er	rthalpy and entropy
Differentiale between er Using examples from daily Answer:-	lije?
	y and enthology which
are related to physics s	up topic of thermoclunamic
Explanation of terms entrop are related to physics of Using analogy from social below is the explanation	7 lites of human, thus
is me equilianois	
A group of young friends is very energetic and ne to play football or hockey	in the peak of their youth
15 very energetic and De	ads a large play ground
to play tootball or bockey	etc. while, when the
and grup prenas be	comes any old they
become less epergetic and the	en they only need a
concer in a small coppee	shop to sit together and
the days of their y	outh, the memories of those
clays when they were more	e energetic and they alway
wanted to wander here and	there.
They always wanted to play	and run jast therefore
mey wanted permissions pri	m their parents to
pancipate in sports that c	ould even harm them
so they wanted more a	llowances, liberties and
freedoms from their parents	because such allowances
are demand of their ener	<u>74</u> ·
0 0	

Page #06 Example:-Imagine a football tightly filled with air and a large empty balloon which you want to fill by largé transferring the tootball's air to the balloon. all g while " atomy so you are giving the air in potball opportunity to show aff its energy (ethalpy) gitzing by giving size (entropy) a large as the) DY enthatpy energy this air is - An noting is that when acts also worth you release the air in the poor to me large balloon, you also increase the hunger or the air in the thirst of dir for heat or warmth from nearby objects surrounchings or environment because now this air (after being released has become cooler and as you know that cool things absorb heat energy from surrounding environment on the and other hand when earlier We put the air in potball previously it torned hence this air med to release