Name	Hilal Ahmad
Id	14728
Class	Bs (SE) $4^{\text {th }}$ semester
Section	B
Paper	Computer Communication \& Networks
Date	$6 / 24 / 2020$
Instructor name	Mansor Qadir

Question: $\mathbf{1}$ 1. In a block of addresses, we know the IP address of one host is 101.10.11. X / ID4+5. What are the first address (network address) and the last address (limited broadcast address) in this block? (Note: X is the sum of your ID e.g. if your ID is $12345, \mathrm{X}=15$, ID4+5 is the sum of 4 th and 5 th digit of your roll number e.g. $4+5=9$)

Answer: 1
Solving the following numerical problem:

Let Id=14728
X=sum of id=22
Then
the IP address of one host is 101.10.11.22/31

* What are the first address (network address)

The first address in the block can be found by setting the rightmost 32 - \boldsymbol{n} bits to 0 s

The binary representation of the given address is
11001101000100000010010100100111
If we set 32-28 rightmost bits to 0 , we get
1100110100010000001001010010000

Or
101.10.11.32
the last address (limited broadcast address)

The last address in the block can be found by setting the rightmost 32 - n bits to 1 s .

The binary representation of the given address is

Question 2 Take your Roll No as decimal notation, now convert it to Binary notation. Draw the graph
of the NRZ-L scheme using the binary notation of your roll no as data stream, assuming
that the last signal level has been positive.
(Note: If your ID is $\mathbf{1 2 3 4 5}$ convert it to binary and solve)
Solution
Let $\mathrm{id}=14728$
Converting it into binary

14728=011100110001000

Question-3 Two neighboring nodes (A and B) use a sliding-window protocol with a 3-bit sequence
number. As the ARQ mechanism, go-back-N is used with a window size of ID last
Assuming A is transmitting and B is receiving, show the window positions for the following succession of events: Before A sends any frames After A sends frames 0,1,2,3, 4 and receives acknowledgment from B for 0,1 and 2 after A sends frames 5,6 and B acknowledges 5 and the ACK is received by A
(Note: If ID last > $\mathbf{5}$ then ID last / $\mathbf{2}$ e.g. if your ID is $\mathbf{1 2 3 4 4}$ then IDlast=4, if ID is $\mathbf{2 4 3 8 9}$ then IDlast = 9 so $9 / 2=4$ so

solution

a. Before A sends any frames

System A - Initial

System B - Initial

b.

System A sends 3 frames F0, F1, F2
No acknowledgments received
System B receives 3 frames F0, F1, F2

System A
No acknowledgments sent
System B

c.

System A receives RR3 from B

window size is 4

System B sends RR3

Question 4 An ISP is granted a block of addresses starting with 160 . (X) . (ID3+4) . 0/16
The ISP needs to distribute these addresses to three groups of customers as follows:
a. The first group has 16 customers; each needs 64 addresses.
b. The second group has 64 customers; each needs 32 addresses.
c. The third group has 64 customers; each needs 16 addresses.

Design the sub-blocks and find out how many addresses are still available after these allocations.

Solution:

Suppose id=14728
X=sum of id=22
Know
Address is 160.22.29.0/16

1 The first group has 16 customers; each needs 64 addresses

Group 1
For this group, each customer needs 64 addresses. This means that $8(\log 2256)$ bits are needed to define each host. The prefix length is then $32-8=24$. The addresses are 1st Customer: 2nd Customer:
64th Customer: 190.100.63.0/24 190.100.63.255/24 Total $=64 \times 24=1536$

Group2 For this group, each customer needs 32 addresses. This means that 7 (10 g 2128) bits are needed to define each host. The prefix length is then $32-7=25$. The addresses are

1st Customer: 160.22.29.0/16
Total $=32 \mathrm{X} 128=4096$

For this group, each customer needs 64 addresses. This means that 6 (logz 64) bits are needed to each host. The prefix length is then $32-6=26$. The addresses are

1stCustomer: 160.22.29.0/16

2nd Customer: 160.22.29.0/16
64 Customer: $160.22 .29 .0 / 16$ Total $=128 \mathrm{X} 16=2048$

