Name: Sajawal Khan
ID 14756
Department: BS (cs) $4^{\text {th }}$
Paper: Probability and Statistics
(1)

Date:

\& Question I $?$
\therefore Answer
The same space S for this experiment is

$$
\begin{aligned}
S=\{ & (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2) \\
& (2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3) \\
& (3,4),(3,5)(3,6),(4,11) 4,2),(4,3),(4,4),(4,5) \\
& (4,6),(5,1)((5,2),(5,3)(5,4)(1,5),(5,6),(6,1) \\
& (6,2) \times(6,3),(6,4),(6,5),(6,6) \text {, }
\end{aligned}
$$

Let $A=\{$ the sum is 7 \}
$B=\{$ the sum is old \}
$C=$ \{ the sum is yocente 0 then $b\}$
$D=\{$ the two die lad the same outcome\} then

$$
\begin{aligned}
& A=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
& B=\{(1,2),(1,4),(1,6)(2,1),(2,3),(2,5), 13,2) \ldots \ldots(6,5)\} \\
& C=\{(1,6),(2,5),(2,6),(3,4),(3,5),(3,6) \ldots \ldots(6,6)\} \\
& D=\{(1,1)(2,9),(3,3),(4,4),(5,5),(6,6)\} \\
& \text { DarsiNotes }
\end{aligned}
$$

$$
\begin{aligned}
& A \cap B=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \\
& A \cap C=\{(1,6),(2,5),(B, 4),(4,3),(5,2),(6,1)\} \\
& A \cap D=6 \\
& P(A)=6 / 36, P(B)=18 / 36, P(C)=\frac{21}{36} \\
& P(D)=6 / 36 \\
& P(A \cap B)=6 / 36, P(A \cap C)=6 / 36 \text { and } P(A \cap D)=0
\end{aligned}
$$

Hance

$$
\begin{aligned}
& P(A / B)=\frac{P(A A B)}{P(C)}=\frac{26}{36} \times \frac{36}{18}=\frac{1}{3} \\
& P(A / C)=\frac{P(A \Lambda C)}{P(C)}=\frac{6}{36} \times \frac{36}{21}=\frac{2}{7} \\
& P(A / P)=\frac{P(A \cap P)}{P(D)}=0 \times \frac{36}{6}=0
\end{aligned}
$$

Question 2

Answer

As there are 6 numbers on one die and 6 on the other, the total number of ways the dice can fall is 36 .
Let (1,4) represent rolling a 1 with the first die and a 4 with the second and so on.
A sum of 2 can be obtained in only 1 way -from (1,1)
A sum of 3 can be obtained in 2 ways $-(1,2)$ and $(2,1)$
A sum of 4 can be obtained in 3 ways - $(1,3),(2,2)$ and $(3,1)$
A sum of 5 can be obtained in 4 ways $-(1,4),(2,3),(3,2)$ and $(4,1)$
A sum of 6 can be obtained in 5 ways $-(1,5),(2,4),(3,3),(4,2)$ and $(5,1)$
A sum of 7 can be obtained in 6 ways $-(1,6),(2,5),(3,4),(4,3),(5,2)$ and $(6,1)$
A sum of 8 can be obtained in 5 ways $-(2,6),(3,5),(4,4),(5,3)$, and $(6,2)$
A sum of 9 can be obtained in 4 ways $-(3,6),(4,5),(5,4)$ and $(6,3)$
A sum of 10 can be obtained in 3 ways $-(4,6),(5,5)$ and $(6,4)$
A sum of 11 can be obtained in 2 ways - $(5,6)$ and $(6,5)$
A sum of 12 can be obtained in 1 way - $(6,6)$
A sum greater than 7 occurs when the total is $8,9,10,11$ or 12 .
From the list above, this can happen in $5+4+3+2+1=15$ ways
The probability of obtaining a sum greater than 7 is $15 / 36=5 / 12$ or approx 0.42 .

- Q 3 :

Answer.
Give that $p=\frac{g}{3} \quad n=8$

$$
\begin{aligned}
q & =1-p \\
& =1-\frac{g}{3} \\
q & =1 / 3
\end{aligned}
$$

tet "x" denote the number of games wow by A, then

1) $P(x-4)$

$$
\begin{aligned}
& =\left(\frac{8}{4}\right)\left(\frac{2}{3}\right)^{4}(1 / 3)^{4} \\
& =1180 \\
& =0.1707
\end{aligned}
$$

(ii) $P(x \geq 4)$

$$
\begin{array}{r}
1-p(x<4) \\
21-\sum^{3}\left(\frac{8}{x}\right)\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{8-x} \\
\left.21-\left[\frac{1}{3}\right)^{8}+8\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{7}+98\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{6}+56\left(\frac{3}{3}\right)^{3}\right] \\
\left.\left.\frac{1}{3}\right)^{5}\right]
\end{array}
$$

$$
\begin{aligned}
& =1-\frac{1}{6561}[1+16+11 g+448] \\
& =1-\frac{577}{6561} \\
& =\frac{6561-577}{6561} \\
& =\frac{5984}{6561} \\
& =0.9121
\end{aligned}
$$

(iii) $P(x \geq 6)$

$$
\begin{aligned}
& \sum_{x=6}^{8}\binom{8}{x}\left(\frac{g}{3}\right)^{x}(1 / 3)^{8-x} \\
& =\binom{8}{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{2}+\left(\frac{8}{7}\right)\left(\frac{2}{3}\right)^{7}(1 / 3)+\binom{8}{8}\left(\frac{2}{3}\right)^{8}(1 / 3)^{8} \\
& =\frac{64}{6561}(28+16+4) \\
& =\frac{64 \times 48}{6561} \\
& =\frac{1094}{6561} \Rightarrow 0.4682
\end{aligned}
$$

iv) $P(3 \leq x \leq 6)$

$$
\left.\left.\begin{array}{rl}
& \sum_{x=3}^{6}\binom{8}{8}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{8-x} \\
3
\end{array}\right)\binom{\left.\frac{y}{3}\right)^{3}(1 / 3)^{5}+\binom{8}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{4}+\binom{8}{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{3}}{6}\left(\frac{2}{3}\right)^{6}(1 / 3)^{2}\right)
$$

Date:

$$
1 Q 41
$$

(Ashed)
Proof:-
Since the cis form a partition of the sample space we can apply the Law of total poobubility for $A \cap B$.

$$
\begin{aligned}
& P(A \cap B)=\sum_{i=1}^{m} P\left(A \cap B / C_{i}\right) P\left(C_{i}\right) \\
& P(A \cap B)=\sum_{i=1}^{m} P(A / C i) P\left(B / C_{i}\right) P\left(C_{i}\right)
\end{aligned}
$$

:- (A and Base conditionally independent)

$$
P(A \cap B)=\sum_{i=1}^{m} P(A / C i) P(B) P(i)
$$

$\therefore-$
cis independent of all
cis

$$
\begin{aligned}
& P(A \cap B)=P(B) \sum_{i=1}^{m} P(A Y(C) \quad P(C i) \\
& P(A \cap B)=P(B) P(A)
\end{aligned}
$$

Hence A and B of total poobabitity DarsiNotes

Question 5

Answer:

Mean and Variance of Binomial Random Variables
The probability function for a binomial random variable is
$b(x ; n, p)=n \times 巴 p x(1-p) n-x$
This is the probability of having x successes in a series of n independent trials when the probability of success in any one of the trials is p . If X is a random variable with this probability distribution,

$$
\begin{aligned}
E(X) & =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}
\end{aligned}
$$

since the $x=0$ term vanishes. Let $y=x-1$ and $m=n-1$. Subbing $x=y+1$ and $n=m+1$ into the last sum (and using the fact that the limits $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{n}$ correspond to $\mathrm{y}=0$ and $\mathrm{y}=\mathrm{n}-1=\mathrm{m}$, respectively)

$$
\begin{aligned}
E(X) & =\sum_{y=0}^{m} \frac{(m+1)!}{y!(m-y)!} p^{y+1}(1-p)^{m-y} \\
& =(m+1) p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y} \\
& =n p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}
\end{aligned}
$$

The binomial theorem says that

$$
(a+b)^{m}=\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} a^{y} b^{m-y}
$$

Setting $a=p$ and $b=1-p$

$$
\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}=\sum_{y=0}^{m} \frac{m!}{y!(m-y)!} a^{y} b^{m-y}=(a+b)^{m}=(p+1-p)^{m}=1
$$

so that
$E(X)=n p$
Similarly, but this time using $\mathrm{y}=\mathrm{x}-2$ and $\mathrm{m}=\mathrm{n}-2$

$$
\begin{aligned}
E(X(X-1)) & =\sum_{x=0}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)!} p^{x}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x} \\
& =n(n-1) p^{2} \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y} \\
& =n(n-1) p^{2}(p+(1-p))^{m} \\
& =n(n-1) p^{2}
\end{aligned}
$$

So the variance of X is

$$
\begin{aligned}
& E(X 2)-E(X) 2=E X(X-1) \text { a }+E(X)-E(X) 2=n(n-1) p 2+n p-(n p) 2 \\
& =n p(1-p)
\end{aligned}
$$

$\therefore Q \in \hat{i}$
Answer
\& Bi-nominal forwueney distribution:if the bi-hominal probability distribution is multiplied by N, the numbed of expetiments of sets, the besulting distribution is known as the bi-nomial frequency distribution.

Formula:-

$$
N\binom{n}{x} p^{x} q^{n-x}
$$

\& Bi-hominal dist tibution:-
Many
Experiment Consist of oepcates independent trials each trial. having two possible outcome. if the poonability of catch outcome bemaing the same throwghant the toidls then such trials abe (82) Called "Bebnouli trials" and

$$
(27)
$$

Answer
Coefficient of variation.
Foo Data Set A:

$$
\begin{aligned}
& C V=\frac{3}{45} \times 100 \\
& C V=6.7
\end{aligned}
$$

for Data Set B:-

$$
\begin{aligned}
& C V=\frac{11}{60} \quad \times 100 \\
& C V=18 \cdot 3
\end{aligned}
$$

fol Data Set C:-

$$
\begin{aligned}
& C V=5 / 50 \times 100 \\
& C V=10
\end{aligned}
$$

foo Data set D:-

$$
C V=\frac{15}{95} \times 100 \quad \underset{\text { DarsiNotes }}{60}
$$

