Q1: Construct a grouped distribution table for the following data and Calculate Mean, Mode Median and Quartiles.
$423,369,387,411,393,394,371,377,389,409,392,408,431,401,363,391$, $405,382,400,381,399,415,428,422,396,372,410,419,386,390$

Q2: By multiplying each of the numbers $3,6,2,1,7,5$ by 2 and then adding 5 , we obtain $11,17,9,7,19,15$. What is the relation between the standard deviation and the means of the two sets.

Q3: For the following grouped distribution table Calculate The Variance and Standard Deviation

Class	$64-84$	$85-104$	$105-124$	$125-144$	$145-164$	$165-184$	$185-204$
Frequency	15	18	27	10	6	5	13

Q4: If two fair dice are thrown, what is the probability of getting

1. A double six
2. A sum of 8 or more dots

Sol:

The sample space S is represented by the following 36 outcomes
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$

$$
\begin{aligned}
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}
\end{aligned}
$$

1. Let A be the event that double six occurs

$A=\{(6,6)\}$ and thus
$P(A)=1 / 36$

2. Let B denotes that a sum of 8 or more dots occurs

$B=\{(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$P(B)=15 / 36=5 / 12$
Q5. Let $\mathrm{C} 1, \mathrm{C} 2, \cdots, \mathrm{CMC1}, \mathrm{C} 2, \cdots, \mathrm{CM}$ be a partition of the sample space SS , and $A A$ and $B B$ be two events. Suppose we know that

- A and B are conditionally independent given C_{i}, for all $i \in\{1,2, \cdots, M\}$
- $\quad B$ is independent of all C_{i} 's.

Prove that A and B are independent.

