Final Term Assignment Multivariate Calculus

Note: Attempt all questions. Copying from Internet and one another is strictly prohibited. Such answers will be marked zero.

Q1.
Find $\frac{\partial^{2} z}{\partial x \partial y}$ and $\frac{\partial^{2} z}{\partial y \partial x}$ for $z=\arcsin \left(\frac{x}{y}\right)$

Q2
Show that the function $f(x, y)=e^{x} \sin y+e^{y} \cos x$ satisfies the Laplace's equation.

Q3

If $f(x, y)=x^{3} e^{-y}+y^{3} \sec x$, then find the partial derivatives of $f(x, y)$ with respect to x and y.

Q4

Find the vector projection of $b=6 i+3 j+2 k$ onto $a=i-2 j-2 k$.

Q5

Find the directional derivative of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $a=3 i^{\wedge}$ $-4 j^{\wedge}$.

Find the Equation of the tangent plane and normal of the surface $f(x, y, z)=x^{2}+y^{2}+z^{2}-14$, at the point $\mathrm{P}(1,-2,3)$

Q7.

$$
\text { Evaluate the double integral } \int_{0}^{1} \int_{0}^{1}\left(x y+y^{2}\right) d x d y
$$

Q8.
Find the area of the region R enclosed by the parabola $y=x^{2}$ and the line

Q1:- Find $\frac{\partial^{2} z}{\partial x \partial y}$ and $\frac{\partial^{2} z}{\partial y \partial x}$ for $z=\arcsin \left[\frac{x}{y}\right]$
Answer.
Since are is constant with respect to
x,
Differentiate using the chain rule, which
states that $\frac{d}{d x}[f(g(x))]$ is

$$
\begin{aligned}
& f^{\prime}(g(x)) g^{\prime}(x) \text { where } \\
& f(x)=\sin (x) \text { and } g(x)=\frac{x}{y}
\end{aligned}
$$

To apply the chain Rule, set x as $\frac{x}{y}$.
are $\left(\frac{d}{d x}[\sin (x)] \frac{d}{d}\left[\frac{x}{4}\right]\right.$ are $\left(\frac{d}{d x}[\sin (x)] \frac{d}{d x}\left[\frac{x}{y}\right]\right.$
The derivative of $\sin (x)$ with rapped to xis $\cos (u)$.

$$
\begin{aligned}
& \text { is } \cos (x) \\
& \text { are }\left(\cos (x) \frac{d}{d x}\left[\frac{x}{y}\right]\right)
\end{aligned}
$$

Replace all occurrences of x with $\frac{x}{j}$.

$$
\operatorname{arc}\left(\cos \left(\frac{x}{y}\right) \frac{d}{d x}\left[\frac{x}{y}\right]\right)
$$

Differentiate.
Since $\frac{1}{g}$ is constant with respect to x, the derivative of $\frac{x}{y}$ with respect t o x is $\frac{1}{2} \frac{d}{d x}[x]$.
$\operatorname{avc} \cos \left(\frac{x}{y}\right)\left(\frac{1}{y} \frac{d}{d x}[x]\right)$
(2)

Combine a and $\frac{1}{y}$ $\arccos \left(\frac{x}{y}\right)\left(\frac{a}{y} \frac{d}{d x}[x]\right)$.

Combine r and $\frac{a}{y}$.

$$
\cos \left(\frac{x}{y}\right)\left(\frac{r u}{y} \frac{d}{d x}[x]\right)
$$

Combine $\frac{r a}{4}$ and.

$$
\frac{\mathrm{rac}}{y} \cos \left(\frac{x}{y}\right) \frac{d}{d x}[x]
$$

Combine $\frac{r a c}{y}$ and $\cos \left(\frac{x}{y}\right)$.

$$
\frac{\operatorname{raccos}\left(\frac{x}{y}\right)}{y} \frac{d}{d x}[x]
$$

Differentiate. using the power Rule which states that $\frac{d}{d x}\left[x^{n}\right]$ is $n x^{n-1}$ where $n=1$

$$
\frac{\operatorname{raccos}\left(\frac{x}{y}\right) \cdot 1}{y} \text { sprention. }
$$

Simplify the expression.

$$
\begin{aligned}
& \frac{\text { multiply }}{\operatorname{raccos}(x)} \frac{\operatorname{recos}\left(\frac{x}{y}\right)}{y} \text { by l. } \\
& \text { Reorder }
\end{aligned}
$$ of Reorder turns.

Qa:-
Show that the function $f(x, y)=e^{x} \sin y+e^{y}$ $\cos x$ salify the Laplaces $^{\text {un equal }} f(x, y)={ }^{x}$ sing

Answer.
Differentiate both sides of
the equation if

$$
\frac{d}{d y}(f(x, y))=\frac{d}{d y}\left(e^{x} \sin (y)+e^{y} \cos (x)\right)
$$

Since f is constant in th respect to y
the derivative of $f(x, y)$ with seeped to the derivative of $f(x, y)$ acth sunned to

$$
y \text { is } f \frac{d}{d y}[(x, y)] \text {. } f \frac{d}{d y}[(x, y)]
$$

Differentiate the sight side of the equities

By the sum Role ti derivatives to $e^{x} \sin (y)+e^{y} \cos (x)$ isth rasped to y is $\frac{d}{d y}\left[e^{x} \sin (y)\right]+\frac{d}{d y}\left[e^{y} \cos (x)\right]$.

$$
\begin{aligned}
& \frac{d}{d y}\left[e^{y} \cos (x)\right] \\
& e^{x} \cos (y)+\sin (y) e^{x} \frac{d}{d y}[x]+\frac{d}{d y}\left[e^{y} \cos (x)\right] \\
& e^{x} \cos (y)+\sin (y) \dot{e}^{x} \frac{d}{d y}[x)+ \\
& e^{y}\left(-\sin (x) \frac{d}{d y}(x]+\cos (x) \frac{d}{d y}\left[e^{y}\right]\right.
\end{aligned}
$$

Rewrite $\frac{d}{d y}[x]$ as $\frac{d}{d y}[x] \cdot e^{x} \cos (y)+\sin (y)$

$$
\begin{aligned}
& \text { Rewrite } \frac{d}{d y}[x] \text { as } \frac{a}{d y}[x) \cdot e^{y} \cos (y)+\sin (y) \\
& e^{x} \frac{d}{d y}[x]+e^{y}\left(-\sin (x) \frac{d}{d y}[x]+\cos (x) \frac{d}{d y}[x]\right.
\end{aligned}
$$

Differentiate using the Exponential Rule whiles states that $\frac{d}{d y}\left[a^{4}\right]$ is a^{y} in (a) when $a=e$.

$$
\begin{aligned}
& e^{x} \cos (y)+\sin (y) e^{x} \frac{d}{d y}[x]+e^{y}\left(-\sin (x) \frac{d}{d y}[x]\right. \\
& +e^{j}\left(-\sin (x) \frac{d}{d y}[x]\right)+\cos (x) e^{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Move }-1 \text { to the left of } e^{y} \\
& e^{x} \cos (y)+\sin (y) e^{x} \frac{d}{d y}[x]-1 \\
& \cdot e^{y} \sin (x) \frac{d}{d y}[x]+\cos (x) e^{y}
\end{aligned}
$$

Reorder term.

$$
\begin{aligned}
& e^{x} \cos (y)+e^{x} \sin (y) \frac{d}{d y}[x) \\
& -e^{l} \sin (x) \frac{d}{d y}[x]+e^{y} \cos (x)
\end{aligned}
$$

Reform the equation by setter the left side equal to the rights ide.

$$
\begin{aligned}
& -\int \frac{d^{\prime}}{d y}((x, y))=e^{x} \cos (y)+e^{x} \sin (y) x e^{y} \\
& \sin (x) x^{\prime}+e^{y} \cos (x)
\end{aligned}
$$

Solve for x

$$
\begin{aligned}
& e^{x} \cos (y)+e^{x} \sin (j) x^{\prime}-e^{y} \sin (x) x^{\prime} \\
& +e^{y} \cos (x), e^{x} \cos (y)+x e^{x} \sin (y) \\
& x^{\prime} c x \sin (x)+e^{y} \cos (x)=\frac{f d}{d y(x, y))}
\end{aligned}
$$

Qu:- Find the rector projection of $b=6 i+2 j a b$
onto $a=i-2 j-2 k$.
Answer:-

$$
\begin{align*}
& \begin{array}{l}
\overrightarrow{a_{2}}+6 \hat{i}+3 \hat{j}+2 \hat{k} \\
\vec{f}=i-2 \hat{j}-2 \hat{k}
\end{array} \\
& |\vec{e}|=\sqrt{6^{2}+3^{2}+2^{2}}=11 \\
& |\vec{f}|=\sqrt{1^{2}-2^{2}-2^{2}}=-1 \\
& \begin{aligned}
1 & =\frac{\vec{e} \cdot \vec{f}}{|\vec{f}|} \\
& =\frac{\vec{e} \cdot \vec{f}}{(|\vec{f}|)^{2}}(\vec{f})
\end{aligned} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{[(6)(1)+(3)(2)+(2)(2)]}{1}(\hat{i}-2 \hat{j}-2 \hat{i})
\end{aligned}
$$

vector projection

$$
\begin{aligned}
\vec{e} \text { on f } & =\frac{16}{9}(\hat{i}+2 \hat{j}-2 \hat{k}) \\
& =\frac{16}{11} j+\frac{32}{1} \hat{j}-\frac{32}{1} k
\end{aligned}
$$

Qu:-
Find the equation of the tangent plane and normal of the surface $f(x, y, 2)=x^{2}+y^{\prime}+2^{2}-14$, at the point $P(1,-2,3)$

$$
\begin{aligned}
& \Rightarrow f_{x}(x, y, z)=2 x+0+0-14=2 x-14 \\
& \Rightarrow f_{y}(x, y, z)=0+2 y+0-14=2 y-14 \\
& \Rightarrow f_{z}(x, y, z)=0+0+2 z-14=2 z-14
\end{aligned}
$$

New putting points.

$$
\begin{aligned}
& \Rightarrow f_{x}(1,-2,3)=2(1)-14=2-14=-12 \\
& \Rightarrow f_{g}(1,-2,3)=2(-2)-14=-4-14=-14 \\
& \Rightarrow f_{2}(1,-2,3)=2(3)-14=6-14=-8
\end{aligned}
$$

Now with equation of tangent plane

$$
\begin{aligned}
\Rightarrow & f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+ \\
& f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+ \\
& f z\left(x_{0}, y_{0}, z_{0}\right)(z-20) \\
\Rightarrow & -12(x-1)-16(y+2)-e(z-4) \\
\Rightarrow- & -12 x+12-16 y-32-16+24 \\
\Rightarrow & -12 x-16 y-52-20=0
\end{aligned}
$$

Q7. Evaluate the double integral $\int_{00}^{1}\left(x y+y^{2}\right)$ $d x d y$.
double integral

$$
\int_{0}^{1} \int_{0}^{1}\left(x y+y^{2}\right) d y d x
$$

\rightarrow first me will solve inner integral

$$
\begin{aligned}
& =\int_{0}^{1}\left(x y+y^{2}\right) d y \\
& =\int_{0}^{1}\left[\frac{x y^{2}}{2}+\frac{y^{3}}{3}\right] \\
& =\frac{x}{2}\left((1)^{2}-(0)^{2}\right)+\frac{1}{3}\left((1)^{3}-(\cdot)^{3}\right) \\
& =\frac{x}{2}(1)+\frac{1}{3}(1) \\
& =\frac{x}{2}+\frac{1}{3} \text { or } \frac{3 x+2}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now } \int_{0}^{1}\left(\frac{x}{2}+\frac{1}{3}\right) d x . \\
& \int_{0}^{1}-\frac{x^{2}}{2 \times 2}+\frac{1}{3}=\frac{1}{4}\left((1)^{2}-(0)^{2}\right)+\frac{1}{3} \\
& \frac{1}{4}+\frac{1}{2 i}=\frac{3+4}{12}=\frac{7}{12} \text { Hes }
\end{aligned}
$$

28.

Find the area of the region R enclosed by the parabola $y=x^{2}$ and the line $y=x+2$.

Answer.
If we dived R into the regions K_{1} and R_{2}. We may calculate the area as

$$
A=\iint_{R_{1}} d A+\iint_{R_{2}} d A=\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x
$$

on the other hand, revering the order of integration $A=\int_{-1}^{2} \int_{x^{2}}^{x+2} d y d x$.

(b)

Calculate this area takes (a) two double integrals if the first integration is with sespat to x. but (b) only if the first integration is with respect to y

This Second result, which requires only one integral is simpler and is the only one we would bother to write down is practice the area is

$$
\left.A=\int_{-1}^{2}[y]_{x^{2}}^{x+2} d x=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\left[\frac{x^{2}}{2}+2 x-\frac{x^{2}}{3}\right]_{-1}^{2}-\frac{9}{2}\right]
$$

Average value of fover $R=\frac{1}{\operatorname{arcap} R} \iint_{R} f d A$.
Ans:-

Question no 3 :
If $f(x, y)=x^{3} e^{-y}+y^{3} \sec x$, then fond
at derivatuwes of $f(x, y)$ with the partial derivatives of $f(x, y)$ with respect to x andy.

Answer:-
By the sum rule, the derivadie of $x^{3} e^{-y}+y^{3} \sec (x)$ with respect to x is $\frac{d}{d x}\left[x^{3} e^{-y}\right]+\frac{d}{d x}\left[y^{3} \sec (x)\right]$.

$$
\frac{d}{d x}\left[x^{3} e^{-y}\right]+\frac{d}{d x}\left[y^{3} \sec (x)\right]
$$

Evaluate $\frac{d}{d x}\left[x^{3} e^{-y}\right]$.
Since e^{-y} is constant with respect to x, the derivative of $x^{3} e^{-y}$ with respect to

$$
\begin{aligned}
& x \text { is } e^{-y} \frac{d}{d x}\left[x^{3}\right] . \\
& e^{-y} \frac{d}{d x}\left[x^{3}\right]+\frac{d}{d x}\left[y^{3} \sec (x)\right]
\end{aligned}
$$

Differentiate using the Power Rule which states that $\frac{d}{d x}\left[x^{n}\right]$ is $m x^{n-1}$ where $x=3$.

$$
e^{-y}\left(3 x^{2}\right)+\frac{d}{d x}\left[y^{3} \sec (x)\right]
$$

move 3 to the left of e^{-y}.

$$
3 e^{-y} x^{2}+\frac{d}{d x}\left[y^{\prime} \sec (x)\right]
$$

Evaluate $\frac{d}{d x}\left[y^{3} \sec (x)\right]$.
Since y^{3} is constant with respect to x, the derivative of $y^{3} \sec (x)$ with serpent to x is $y^{3} \frac{d}{d x}[\sec (x)]$.

$$
3 e^{-y} x^{2}+y^{3} \frac{d}{d x}[\sec (x)]
$$

the derivative of $\sec (x)$ with serpect to x is $\sec (x) \tan (x)$.

$$
3 e^{-y} x^{2}+y^{3} \sec (x) \tan (x)
$$

Question mo 05:-
Find the directional derivatives of $f(x, y)=x e^{y}+\cos (x y)$ at the point $(2,0)$ in the direction of $a=3 \hat{i}-4 \hat{j}$.

Ansures:

$$
\begin{aligned}
& \left.\frac{d}{d x}[f(x) e(y)] \text { is } f(x) \frac{d}{d x}[e(x))\right] x \\
& e(x) \frac{d}{d x}[f(x)] \text { where } f(x)= \\
& x \text { and } g(x)=\ln (x) \text {. } x \frac{d}{d x} \\
& {[\ln (x)]+\ln (x) \frac{d}{d x}[x]}
\end{aligned}
$$

x is $x e^{y}$.

$$
\begin{aligned}
& x \frac{1}{x}+\ln (3 \hat{i}-4 \hat{i}) . \\
& \frac{d}{d x}\left[x^{n}\right] \text { in } x x^{x-1}
\end{aligned}
$$

Where $n=1$.

$$
x e^{y}+\ln (x) \cdot 1
$$

Combine
x and $x e^{y}+\cos (x y)$
at punts,

$$
2.0
$$

μ.

