NAME : IATAZAZ AHMAD
ID : 15050
DEPARTMENT : COMPUTER SCIENCE PROGRAM : SOFTWARE ENGG SEMESTER : $2^{\text {ND }}$

SECTION : A
SUBJECT : DISCRETE STRUCTURE

Question no 1

Which of the following are propositions ?
(a) is not a proposition. (It is a command, or imperative.)
(b) and
(c) yes, this is propositions.
(d) is not a proposition.
(e) yes this is proposition.
(f) is not a proposition

Question no 2

p is " $x<50$ "; q is " $x>40$ ".

Write as simply as you can:
(a) $x \geq 50$
(b) $x \leq 40$
(c) $40<x<50$
(d) $x<50$ or $x>40$. true.
(e) $x \geq 50$ Don't need to say
(b) (f) in addition, that $x>40 x \geq 50$ and $x>40$

QUESTION NO 3

(A)
(a) some people dislike maths
(B)
(b) The answer is not 2 or it is not 3
(C) The answer is not 2 and not 3
(C)
(d) No one in my class is tell and thin

Question no 4

Construct truth tables for:
(A) $\neg p \vee \neg q$

$\neg p$	q	$\neg p$	$\neg q$	$\neg p \vee \neg q$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

(B) $q^{\wedge}(\neg p \vee q)$

p	q	${ }^{\sim} \mathrm{p}$	$\sim \mathrm{p} \vee \mathrm{q}$	$\mathrm{q}^{\wedge}(\sim \mathrm{p} \vee \mathrm{q})$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	F

(C) $P^{\wedge}(q \vee r)$

p	q	r	qv r	$\mathrm{p}^{\wedge}(\mathrm{qv} \mathrm{r})$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	T
T	F	F	T	F
F	T	T	T	F
F	T	F	T	F
F	F	T	F	F
F	F	F		

(D) $\left(p^{\wedge} q\right) \vee r$

p	q	r	$\mathrm{p}^{\wedge} \mathrm{q}$	$\left(\mathrm{p}^{\wedge} \mathrm{q}\right) \mathrm{v} \mathrm{r}$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	F
T	F	F	F	F
F	T	T	F	T
F	T	F	F	F
F	F	T	F	T
F	F	F	F	

Question no 5

Use truth tables to show that:
$\neg\left((p \vee \neg q) \vee\left(r^{\wedge}(p \vee \neg q)\right)\right) \equiv \neg p^{\wedge} q$

P	q	r	${ }^{\sim} \mathrm{p}$	$\sim_{\text {q }}$	($\mathrm{p} \mathrm{v}^{\sim} \mathrm{q}$)	$\mathrm{r}^{\wedge}\left(\mathrm{p} \sim^{\sim} \mathrm{q}\right)$	$\left(\mathrm{p} \nu^{\sim} \mathrm{q}\right) \mathrm{v}\left(\mathrm{r}^{\wedge}\left(\mathrm{p} \nu^{\sim} \mathrm{q}\right)\right.$	$\sim\left(\left(p v^{\sim} q\right) v\left(r^{\wedge}\left(p v^{\sim} q\right)\right)\right.$
T	T	T	F	F	T	T	T	F
T	T	F	F	F	T	F	T	F
T	F	T	F	T	T	T	T	F
T	F	F	F	T	T	F	T	F
F	T	T	T	F	F	F	F	T
F	T	F	T	F	F	F	F	T
F	F	T	T	T	T	T	T	F
F	F	F	T	T	T	T	T	F

p	q	\sim	$\sim^{\sim}{ }^{\wedge} q$
T	T	F	F
T	T	F	F
T	F	F	F
T	F	F	F
F	T	T	T
F	T	T	T
F	F	T	F

F	F	T	F

Question no 6

```
Use the laws of logical propositions to prove that:
(z^
State carefully which law you are using at each stage
= ( }\mp@subsup{z}{}{\wedge}w)v(\mp@subsup{z}{}{\wedge}w)v(\mp@subsup{z}{}{\wedge~}~w(~\mp@subsup{x}{}{\wedge}w) commutative law
=(z^(wv~w))v(~}\mp@subsup{~}{}{\wedge}w)\quad\mathrm{ Distributive law
=( }\mp@subsup{x}{}{\wedge}T)v(~\mp@subsup{z}{}{\wedge}w) complement law
=xv(~}\mp@subsup{~}{}{\wedge
=(zv~z)^(z v w) distributive law
=T^(z v w) complement law
=( z v w )^\ T commutative law
= z V w identity law
```

THE END

