

Name: Inzamam
ID\#12998
Subject: Linear Algebra
Program: BS(SE)

Question No. 1:
Solution:

## 10\# 12998

Name: Injamam
program: BS(SE)
Subject: linear Algebra

Qi:-
Sol: let $[A-\lambda I]=0$

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -17 & 8
\end{array}\right]-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]=0
$$

$$
\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
4 & -17 & 8-\lambda
\end{array}\right|=0
$$

$$
-\lambda\left|\begin{array}{ll}
-\lambda & 1 \\
-17 & 8-1
\end{array}\right|-1\left|\begin{array}{cc}
0 & 1 \\
4 & 8-\lambda
\end{array}\right|=0
$$

$$
-\lambda[-\lambda(8-\lambda)+17]-1(-4)=0
$$

$$
-\lambda\left[-8 \lambda+\lambda^{2}+17\right]+4=0
$$

$$
-\lambda^{3}+8 \lambda^{2}-17 \lambda+4=0
$$

$$
\begin{aligned}
& \lambda^{3}-8 \lambda^{2}+17 \lambda-4=0 \quad=\frac{4 \pm 2 \sqrt{3}}{2} \\
& \lambda=4
\end{aligned}
$$

$$
\lambda=4 \text { is our root, } \quad \lambda=2 \pm \sqrt{3}
$$

so,

Question No. 2
Solution:

Question 2:
SOI = A Can be diagnalized if there exists an invertible matrix $P$ and diagnol matrix $D$ such that $A=P D P-1$,

Here now,

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right] \\
& \text { Step } 1=\text { Find eigenvalues of the matrix } A \text {, } \\
& |A-\lambda I|=0 \\
& \left|\begin{array}{ccc}
(-\lambda) & 0 & -2 \\
1 & (2-\lambda) & 1 \\
1 & 0 & (3-\lambda)
\end{array}\right|=0 \\
& (-\lambda)(2-\lambda) \times(3-\lambda)-1 \times 0)(1 \times(3-\lambda)-1 \times 1)+(-2)(1 \times 0-(2-\lambda) \times 1) \\
& (-\lambda)\left(\left(6-5 \lambda+\lambda^{2}\right)-0\right)-0((3) \\
& (-\lambda)\left(6-5 \lambda+\lambda^{2}\right)-0(2-\lambda)-2(-2+\lambda)=0 \\
& \left(-\lambda^{3}+5 \lambda^{2}-8 \lambda+4\right)=0 \\
& -(\lambda-1)(\lambda-2)(\lambda-2)=0 \\
& (\lambda-1)=0 \text { or }(\lambda-2)=0 \text { or }(\lambda-2)=0
\end{aligned}
$$

Cont....

The eigenvalues of the matrix $A$ are given by

$$
\lambda=1,2
$$

Step 2,
$\Rightarrow$ Find eigenvectors for $\lambda=2$

Step 3 ,

$$
\begin{aligned}
& v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
& \text { Step } 3
\end{aligned}
$$

The eigenvectors compose the column of matrix $p$

$$
P=\left[\begin{array}{ccc}
-2 & 0 & \\
1 & 1 & -1 \\
1 & 0 & 0 \\
1
\end{array}\right]
$$

Step 4,

The diagnol matrix $D$ is composed of the eigenvalues,

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Step 5,
Now

$$
\begin{aligned}
& \text { Now find } \\
& |P|=\left|\begin{array}{ccc}
-2 & 0 & -1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
\hline
\end{array}\right| \\
& =-2 x\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|+0 \times\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right|-1, x\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|
\end{aligned}
$$

Cont...

$$
\begin{aligned}
& =-2 \times(1 \times 1-0 \times 0)+0 \times(1 \times 1-0 \times 1)-1 \times(1 \times 0-1 \times 1) \\
& =-2 \times(1+0)+0 \times(1+0)-1 \times(0-1) \\
& =-2 \times(1)+0 \times(1)-1 \times(-1) \\
& =-2+0+1 \\
& =-1
\end{aligned}
$$

Ans:

Question No. 3
Solution:


Question No . 4
Part (a)
Ans:

Qu:-
Part (a):
Sol:: The set $P_{n}(x)$ of all polynomials over $f$ in variable $x$ of degree $\leq n$ forms a vector space over $R$.
if $f_{n}(x)=a_{0}+a_{1 x}+\ldots \cdot \cdot+a_{n} x^{n}$
Then, $\begin{aligned} & =b_{0}(x)+b_{1} x+\cdots \cdots \cdots+b_{n}(x) \\ = & \left(a_{0}+b_{0}\right)+\left(a_{i}+b_{i}\right) b_{i}+\cdots \in R .\end{aligned}$
is a polynomial of $\operatorname{Pn}_{n}(x)$
The associative additive
additive association property is induced from the The zero polynomial property of $R$. as the additive identity,
and - $f_{n}(x)$ identity, gre zero acts additive inverse of $f_{n}(x)$.
Commutative $f(x)$. $\quad$ is the
Property follows from the
property of $R$. Hence from the Commutative abelian group once $P_{n}(x)$ is an additive
The
scalar multiplication of $a \in R$ by $f_{n}(x)$ is defined by

$$
\text { a. } f_{n}(x)=b_{1}
$$

Part (b):
Ans:

Question 4:
part (b):

Ans: Let $F$ be a field. A non empty set $V$ togather with two binary operations ( + ) and (.) forms the Algebric structure of a vector space over the field $F$, if;
$(a)=v$ forms an additive (tue) abelian group.
$(b)=$ The scaler multiplication (.) as a function form Fry into $V$ observes the following
properties, which are given below;
(1): $\forall d \in F, x$ given below;
(2): $\forall d, B \in F$

