Name = Tariq Bilal Id = 13588 Class = Bs(cs)

Q4) If two fair dice are thrown, what is the probability of getting

- 1. A double six
- 2. A sum of 8 or more dots

Ans) When two fair dice is thrown, The possibilities are as below.

{
 (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
 (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
 (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
 (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
 (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
 (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
 }
 So, For getting 6 in both dices, The probability is 1/36.
And, For getting sum of 8, It can be (2,6),(3,5),(4,4),(5,3),(6,2) and It is 5/36.

Q1)

Ans) x.	f
360–369.	2
370-379.	3
380-389.	5
390-399.	7
400-409.	5
410-419.	4
420-429.	3
430-439.	1

Total.

mean = Σ f. m/ Σ f Grade. F. midpoint f. m. c. f 360-369. 2. 364. 728 370-379. 3. 374.5. 1122 380-389. 5. 384.5. 1922.5 390-399. 7. 394.5. 2758 400-409. 5. 404.5. 2022 410-419. 4. 414.5. 1658 420-429. 3. 424.5. 1273 430-439. 1. 434.5. 434.5 Mean = $\Sigma fm / \Sigma f$ = 11918 /30 =397.2 Mode = L=390 ,f1=7 ,f0=5 ,f2= 5,h=9 Mode = I + (f1 - f0/2f1 - f0 - f2)*hMode = 390 + (7-5 /2(7)-5-5)*9 Mode $= 390 + (0.5)^{*9}$ Mode = 394.5 Median = L + (n/2-F /f) *c Median = 400 + (4.6)*9Median =441.4 Quartiles Q1 =370-379 Q2= 400-409 Q3=420-429

30

Q3)

Ans)

1. Variance= $\sigma^2 = \sum (x - \overline{x})^2 / n$ Variance= 94(826.5-196)2/7 Variance = 94(391530)/7 Varaince = 5338260 Standard deviation = $\sqrt{variance}$ Standard deviation = $\sqrt{5338260}$ Standard deviation = 2310.4614 Q5)

Let C1,C2,…,CMC1,C2,…,CM be a partition of the sample space SS, and AA and BB be two events. Suppose we know that

- A and B are conditionally independent given C_i , for all $i \in \{1, 2, \dots, M\}$
- B is independent of all C_i's.

Prove that A and B are independent.

Ans)

A and B are conditionally independent

C1 ,C2 CmC1 ,C2 ,Cm be a partition of the sample space. A and b are two events.

A occur seperately and B occur seperatly it is a separate events.

C1 ...C2 are partition of the sample space .C are the sample space and A, B are events. Events are separate from samples.

Events are always separate from the sample. Events occur after sample and A and B are independent to each other.

Hence it is proved A and B are independent.

Q5) By multiplying each of the numbers 3,6,2,1,7,5 by 2 and then adding 5, we obtain 11,17,9,7,19,15. What is the relation between the standard deviation and the means of the two sets.

Ans) means = Σ x/n Mean = 24/6 Mean =4 Mean = 78/6 Mean = 13

• $\sigma^2 = \sum (\mathbf{x} - \overline{\mathbf{x}})^2 / \mathbf{n}$ varance = (78-13)2/6 variance = 4225/6 variance = 704 standard deviation = $\sqrt{variance}$ standard deviation = $\sqrt{704}$ standard deviation = 26.53 the standard deviation of the two sets is double of its 2nd set mean. So the standard deviation is double of the 2nd mean. And 1st mean is smaller than 2nd mean.