$$
\begin{aligned}
\text { Name } & =\text { Tariq Bilal } \\
\text { Id } & =13588 \\
\text { Class } & =\text { Bs }(\mathrm{cs})
\end{aligned}
$$

Q4) If two fair dice are thrown, what is the probability of getting

1. A double six
2. A sum of 8 or more dots

Ans) When two fair dice is thrown, The possibilities are as below.
\{
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1), (2,2), (2,3), (2,4),(2,5),(2,6),
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
(5, 1),(5,2),(5,3),(5,4),(5,5),(5,6),
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)$,
\}
So, For getting 6 in both dices, The probability is $1 / 36$.
And, For getting sum of 8 , It can be $(2,6),(3,5),(4,4),(5,3),(6,2)$ and It is $5 / 36$.

Q1)

Ans) x.	f
$360-369$.	2
$370-379$.	3
$380-389$.	5
$390-399$.	7
$400-409$.	5
$410-419$.	4
$420-429$.	3
$430-439$.	1

```
        mean = \Sigma f. m/ \Sigmaf
        Grade. F. midpoint f.m.c.f
        360-369. 2. 364. }72
        370-379. 3. 374.5. 1122
        380-389. 5. 384.5. 1922.5
        390-399. 7. 394.5. 2758
        400-409. 5. 404.5. 2022
        410-419. 4. 414.5. 1658
420-429. 3. 424.5. 1273
430-439. 1. 434.5. 434.5
Mean= \Sigmafm/\Sigmaf
    = 11918/30
        =397.2
Mode =
L=390,f1=7 ,f0=5 ,f2= 5,h=9
Mode = I +(f1-f0/2f1-f0-f2)*h
Mode = 390 + (7-5 /2(7)-5-5)*9
Mode =390+(0.5)*9
Mode=394.5
Median = L + (n/2-F/f) *C
Median = 400 + (4.6)*9
Median =441.4
Quartiles
Q1 =370-379
Q2=400-409
Q3=420-429
```

Q3)

Ans)

1. Variance $=\sigma^{2}=\sum(x-\bar{X})^{2} / n$

Variance $=94$ (826.5-196)2/7
Variance $=94(391530) / 7$
Varaince $=5338260$
Standard deviation $=\sqrt{ }$ variance
Standard deviation $=\sqrt{ } 5338260$
Standard deviation $=2310.4614$
Q5)
Let C1,C2, $\cdots, C M C 1, C 2, \cdots, C M$ be a partition of the sample space $S S$, and $A A$ and $B B$ be two events. Suppose we know that

- A and B are conditionally independent given C_{i}, for all $i \in\{1,2, \cdots, M\}$
- B is independent of all $C_{i} \mathbf{\prime}$.

Prove that A and B are independent.

Ans)
A and B are conditionally independent
$\mathrm{C} 1, \mathrm{C2} \mathrm{CmC1}, \mathrm{C} 2, \mathrm{Cm}$ be a partition of the sample space. A and b are two events.
A occur seperately and B occur seperatly it is a separate events.
C1 ...C2 are partition of the sample space .C are the sample space and A, B are events. Events are separate from samples.

Events are always separate from the sample. Events occur after sample and A and B are independent to each other.

Hence it is proved A and B are independent.
Q5) By multiplying each of the numbers $3,6,2,1,7,5$ by 2 and then adding 5 , we obtain $11,17,9,7,19,15$. What is the relation between the standard deviation and the means of the two sets.

Ans) means $=\Sigma x / n$
Mean $=24 / 6$
Mean $=4$
Mean $=78 / 6$

```
Mean = 13
```

- $\boldsymbol{\sigma}^{2}=\sum(\mathbf{x}-\overline{\mathbf{x}})^{2} / \mathbf{n}$
varance $=(78-13) 2 / 6$
variance $=4225 / 6$
variance $=704$
standard deviation $=\sqrt{ }$ variance
standard deviation $=\sqrt{ } 704$
standard deviation $=26.53$
the standard deviation of the two sets is double of its $2^{\text {nd }}$ set mean.
So the standard deviation is double of the $2^{\text {nd }}$ mean.
And $1^{\text {st }}$ mean is smaller than $2^{\text {nd }}$ mean.

