Department of Electrical Engineering Final – Term Assignment Spring 2020

Date: 22/06/2020

Course D	eta	ils
-----------------	-----	-----

Course Title:	Computer Communication Network	Module:	06
Instructor:	Engr Muhammad Waqas	Total Marks:	50

Student Details

Name: Idrees Iqbal Student ID: 13171

Q1.	(a)	1. An NRZ-I signal has a data rate of 100 Kbps. Using the following Figure, calculate the value of the normalized energy (P) for frequencies at 0 Hz, 50 KHz, and 100 KHz. O 1 1	Marks 20 CLO 1
		 O No inversion: Next bit is 0 • Inversion: Next bit is 1 What is the Nyquist sampling rate for each of the following signals? a. A low-pass signal with bandwidth of 200 KHz? b. A band-pass signal with bandwidth of 200 KHz if the lowest frequency is 100 KHz? We have sampled a low-pass signal with a bandwidth of 200 KHz using 1024 levels of quantization. a. Calculate the bit rate of the digitized signal. b. Calculate the SNRdB for this signal. Calculate the PCM bandwidth of this signal. What is the maximum data rate of a channel with a bandwidth of 200 KHz if we use four levels of digital signaling. 	
Q2.	(a)	Draw the graph of the NRZ-L, NRZ-I, Manchester and differential Manchester scheme using each of the following data streams a. 01010101 b. 00110011	Marks 16 CLO 1
Q3.	(a)	 A TV channel has a bandwidth of 6 MHz. If we send a digital signal using one channel, what are the data rates if we use one harmonic, three harmonics, and five harmonics? A signal travels from point A to point B. At point A, the signal power is 100 W. At point B, the power is 90 W. What is the attenuation in decibels? The attenuation of a signal is -10 dB. What is the final signal power if it was originally 5 W? A signal has passed through three cascaded amplifiers, each with a 4 dB gain. What is the total gain? How much is the signal amplified? If the bandwidth of the channel is 5 Kbps, how long does it take to send a frame of 100,000 bits out of this device? The light of the sun takes approximately eight minutes to reach the earth. What is the distance between the sun and the earth? 	Marks 12 CLO 1
	(b)	A signal has eight data levels with a pulse duration of 2 ms. Calculate the pulse rate and bit rate.	Marks 02 CLO 1

Semester 8th paper con submitted to try. M- washis Name Takees laybal ID 13172 ONO 1 Given gala Data sale N = look bpc Man first Calculate E Voyle then ofter find emergy p Value by using the given figure f = frequency N = data Pate P 2 energy por Hz The given figure is 0.5 1 2 PIN Case 1: f. oHz then fy 20 20 F 20, 50 P=1 Case 2: fz To KHZ then for 250 FN 2 015 80

P2 2

Case 2

F 2 50 KHZ

thon

1/N 2 50 20.5

1/n 2. 0.5 , So P20.5

Case 8: Fr 100 KHZ

then \$ 100 =1

FN 1 50 P20

Ono 1 post & b)

In a board pass Signal the minimum frequency is equal to bandwholk plus minimum frequency

f man = 200 + 100

2 300 KHZ

2 300 x 103 Hz

= 3,00, 000 HZ

There fore

Nyquist Rate 2 2 x Fmax

	(3) 1317)	
	= 2x 300000	
	2 6,00,000 Cample 1s	
	GNOHI post & (b)	
	Given data .	
	A low pass signed latiff. bandhlight = 200 KH2	
13	2 2 00 × 103 HZ	
	> 2001000 HZ	
1	Not quist Rate Amplitude	
	Nyquist Porte = 2x Fma	
1	Low pay Some	
Photo Control of the	Form Regu	wacy.
1	In a low pass signor , the minimum	
2 100	frequency & min 20	
1	Theso fore the Nyquist sale 22x From 2 2x 2,00,000	
	2 400,000 Sample 15	
- 11		13

13173	
OND #11 POSI 2	
ev - se de la	
Bil Pale 2 Lampling Rake x number	
of bils per dample	
2 F5 x 3 L	
nb 2 lg 2 1084 0 10 bits	
for 2x 200 KHZ = 400 KHZ	
Bil rale = Fs x mb	
2 400 × 10	
z 4 mabes	
(b) SNR 016 2 6 6.02 mb + 1.76 016	
2 6.02 x10 + 1.76	
2 60.9 + 1.76	
SNR 2 61.96	
(C) B min 2 nb X B and of	
B anolog responsent the boundwith	
o sints (e)	ERRE
of amalog bigman!	
Bmm = lox 200 KHZ	
29 KHT	

DN-1 POST 4

Bandwicht & OOKHE > 200,000 Hz

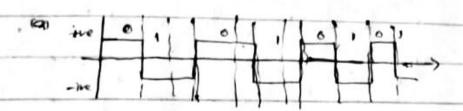
to Calculated

N max = 3x B x nb = 3x 2000 x lg2'

2 800 KLPS

ON. 8:

late need to draw the graph for


9) 01010101

(b) 001100 11

MRZ-L, MRZI 2 Manchegles - B-AU1 and We need to find the bondwidth. NRY-L

In NR7-1 the Vollage levels acke both Gibes of the time anis Mallage level +ve 20 Mallage level ine 21

graph for NRZ-L. 01810101

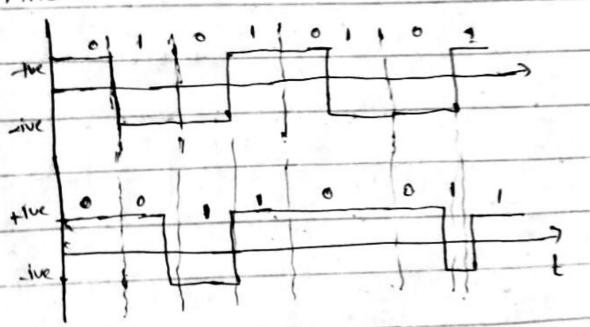
for 0010011

(6)

NRZ-1 has a gregage Rate is N12 man avagage no f Changes in the Signof level.

The minimum bandwith for sugget and 80de is

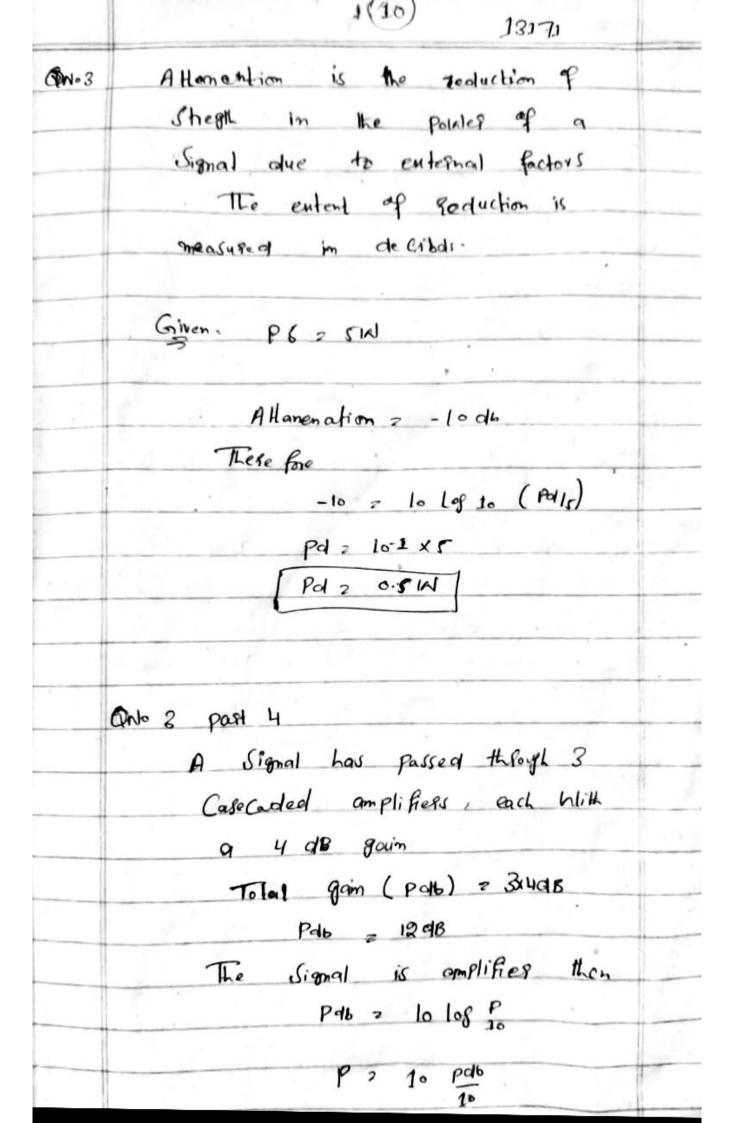
Brin 25: NIE NI-1 bil 9Ne.


Bmin = N

NR7-I

This is some as NR2-L
but inversion occurs when new bit
is other with no inversion

NR2-3


Average Signor Forte of NRZ-1 11

anos part 1 Given data TV channel bandwidth (B) = 6MHZ using the first Larmonic Band Width (B) = glata Pate (bil sate) Data Pale 2 2 XB = 2 x6 Therefore data rate = 12mbps Using the first and there hapmonics A better result Can be actived by using the first and the third hasmonics Wilk the Required bondwith (B) 2 3x data Pate Data Pate = 2XB

> LIMBR

2 2x6

P = 10 19

P = 12.85

Onlos port 5

Bondwickth = 5kbps

2 5000 bps

(1Kbps = 1000 Kbps)

frame of 100,000, bits out

T= 20 5