

Important Instructions:

1) Open this MS-Word document and start writing answers below each

respective question given on page 2.

2) Answers the question in the same sequence in which they appear.

3) Provide to the point and concrete answers. Some of the questions are open

ended and therefore must be answered using your own opinion and thoughts

but backed with logical reasons.

4) First read the questions and understand what is required of you before

writing the answer.

5) Attempt the paper yourself and do not copy from your friends or the Internet.

Students with exactly similar answers or copy paste from the Internet will

not get any marks for their assignment.

6) You can contact me for help if you have any doubt in the above instructions

or the assignment questions.

7) All questions must be attempted.

8) Do not forget to write your name, university ID, class and section

information.

9) Rename you answer file with your university ID# before uploading to SIC.

10) When you are finished with writing your answers and are ready to submit

your answer, convert it to PDF and upload it to SIC unzipped, before the

deadline mentioned on SIC.

Re-Mid Semester Assignment

Course: - Distributed Computing

Deadline: - Mentioned on SIC Marks: - 30

Program: - MS (CS) Dated: 13 June 2020

Student Name: _AWAID ULLAH__ Student ID#_12714__

Class and Section:__MSCS___________

Question1: Discuss how the MMOG‘s as a Distributed System solves certain

challenges due to its distributed architecture.

 (6)

Question2: Among the trends of Distributed Systems discussed in C1-Lec2, which

trend in your opinion will be most dominant in the future and why?

 (6)

Question3: Among the challenges of Distributed Systems discussed in C1-Lec2,

which problem in your opinion will accompany distributed systems into

the future and why?

 (6)

Question4: The design of distributed systems can be described and discussed in

three ways i.e Physical Model, Architectural Model and Fundamental

Model. Describe the example of distributed system in Question1 with

respect to these three models. (6)

Question5: For the purpose of Inter Process Communication (IPC) in distributed

systems, in what situation you will use UDP and TCP and why?

 (6)

Question1: Discuss how the MMOG‘s as a Distributed System solves certain

challenges due to its distributed architecture.

Ans: Massive multiplayer online games provide an immersive experience, and a

large number of users interact with the persistent virtual world via the Internet. The

best examples of such games include Sony's Ever Quest II and Finland's EVE

Online

CCP game. The complexity of these worlds has greatly increased, and now

includes complex gaming areas (such as EVE, online games are composed of a

universe with more than 5,000 star systems) and many different social and

economic systems. The number of players is also increasing, the system can

support more than 50,000 simultaneous online players (due to the need for

response time, the MMOG project is the main challenge of the distributed system

technology. Other challenges include spreading the event to multiple players in

real time and keeping it shared the world’s consensus and many solutions for game

design. Massively multiplayer online games: The largest online game, EVE

Online, uses a client-server architecture to store a single copy of the state of the

world on a centralized server, and can be accessed by the client program running

on the player. The server that supports a large number of clients is a mature and

complex entity, consisting of a cluster architecture with hundreds of computer

nodes. The centralized architecture helps the management of the virtual world, and

a single copy can also promote the consistency of concerns. Then, the goal is to

ensure a rapid response by optimizing the network protocol and ensuring a rapid

response to incoming events. To support this, by assigning each "star system" to a

specific computer in the cluster divides the load. A heavily loaded star system has

its own dedicated computer, while other star systems share a computer. Incoming

events are routed to the correct computer in the cluster to track players in the

galaxy Mobile. Other MMOGs use a more distributed architecture, where the

universe is partitioned on a (possibly very large) number of servers, and these

servers can also be distributed by geographic location. Then, based on the current

usage model and the network delay on the server (For example, depending on the

geographic location) users are dynamically assigned specific servers. This

architectural style adopted by Ever Quest can naturally be expanded by adding new

servers. Most commercial systems use one of the two models described above. But

the researchers now also looking for a peer-to-peer technology, where each

participant contributes resources (storage and processing) to host the game.

Question2: Among the trends of Distributed Systems discussed in C1-Lec2, which

trend in your opinion will be most dominant in the future and why?

ANS: Distributed systems are undergoing an important period of change, which

can be attributed to many trends of influence: the emergence of ubiquitous network

technologies; the emergence of ubiquitous computing, coupled with the desire to

support user mobility in distributed systems; the growing demand for multimedia

services; distributed multimedia systems treat distributed systems as utilities

Pervasive networking and the modern Internet

The Internet is an interconnected collection of many different types of computer

networks, such as Wi-Fi, WiMAX, Bluetooth, and third-generation mobile phone

networks. The end result is that the network has become a ubiquitous resource, and

devices can be connected anytime, anywhere (if needed). The Internet allows

programs running anywhere to send messages to programs elsewhere. The Internet

is also a very large distributed system. It enables users to use services such as the

World Wide Web, e-mail and file transfers wherever they are. The service package

is open-it can be expanded by adding server computers and new types of services.

The figure shows a collection of intranets, which are subnets operated by

enterprises and other organizations, usually protected by firewalls. The role of the

firewall is to protect the intranet by preventing unauthorized messages from

coming out or entering. The firewall is implemented by filtering incoming and

outgoing messages. An Internet Service Provider (ISP) is a company that provides

broadband and other types of connections to individual users and small

organizations so that they can access services anywhere on the Internet. The

internal networks are linked together through a backbone network. The backbone

network uses satellite connections, fiber optic cables and other high-bandwidth

circuits, and has a high-capacity network link. Please note that some organizations

may not want to connect their internal network to the Internet at all. For example,

police and other security and law enforcement agencies may have at least some

internal intranets isolated from the outside world (probably the most effective

firewall-there is no physical connection when resources need to be shared between

internal and external users, by preventing legitimate access to services Firewalls

may also have problems in distributed systems. As a result, firewalls often require

better mechanisms and strategies to supplement them. The implementation of the

Internet and the services it supports has led to the development of practical

solutions to many distributed system problems.

Mobile and ubiquitous computing:

Device miniaturization and technological advancements in wireless networks have

increasingly led to the integration of small portable computing devices into

distributed systems. These devices include: laptop computers. Portable devices

such as smart phones, GPS-compatible devices, pagers (PDAs) and digital

cameras. Wearable devices, such as smart watches with functions similar to PDAs.

Built-in appliances in washing machines, high-fidelity audio systems, automobiles

and refrigerators. In mobile computing, users who are far from the "home" intranet

(intranet at work or at home) can always access resources through the devices they

carry. They can continue to access the Internet (home intranet); more and more,

regulations require users to use nearby resources, such as printers or even sockets,

while traveling. The latter is also called location or context sensitive computing.

Ubiquitous computing is the use of many small and inexpensive computing devices

that exist in users' physical environments (including homes, offices, and even

natural environments). The term "ubiquitous" is intended to imply that small

computing devices will eventually become so common among everyday objects

that they are hardly noticed. In other words, their computer behavior will be

transparently and tightly linked to their body functions. Only when there are

computers everywhere can they communicate with each other. Ubiquity overlaps

with mobile computing, because in principle mobile users can benefit from

computers anywhere. But they are usually different. Ubiquitous computing can

benefit users, and they can stay in unique environments such as homes or hospitals.

Distributed multimedia systems.

Another important trend is the need to support multimedia services in distributed

systems. Multimedia support can be effectively defined as the ability to support

multiple media types in an integrated manner. Distributed systems support the

storage, transmission, and representation of what are commonly referred to as

discrete media types (such as images or text messages). The distributed multimedia

system should be able to perform the same function on continuous media types

such as audio and video. The key feature of continuous media types is that their

integrity depends on the real-time relationship between the elements of the

reserved media type. For example, in video, it is necessary to maintain the number

of frames per second, and for real-time streaming, it is necessary to maintain the

maximum delay or delay provided to deliver the image

Distributed computing as a utility

Many companies advocate the vision of using distributed resources as commodities

or public services, analogous to other public services such as water or electricity.

Using this model, resources are provided by the service provider and effectively

rented out, not owned by the end user. The model is applicable to physical

resources (storage and processing) and logical services. Users can access complex

data centers and even IT infrastructure using the types of services now provided by

companies such as Amazon and Google. In fact, users can be served through

virtual (virtual operating systems) rather than physical nodes. You can also use this

method to provide software services on the Internet worldwide. Many companies

now offer a full range of services for effective leasing, including email and

calendar services. For example, Google recommends that the Google Apps Blade

server is the least computational item, which includes processing and storage

capacity (main memory). The blade system consists of a potentially large number

of blade servers contained in the blade chassis. The chassis provides other items

such as power, cooling, persistent storage (disk), network, and display. With this

solution, a single blade server can be much smaller than a standard PC, and

production costs are also lower. The overall goal of the cluster computer is to

provide a series of cloud services, including high-performance computing, mass

storage (data center) and richer application services (such as Web search).

Question3: Among the challenges of Distributed Systems discussed in C1-Lec2,

which problem in your opinion will accompany distributed systems into the future

and why?

ANS: Heterogeneity

 Internet users access services on heterogeneous computers and network

collections. Heterogeneity (diversity and difference) applies to networks;

equipment; bones; programming languages; implementation. The heterogeneity of

the Internet is obscured by the use of Internet protocols. The representation of the

data type may be different on different hardware. Different programming

languages use different representations for characters and data structures (such as

arrays and records). These differences must be considered so that programs written

in different languages can communicate with each other. Unless they use common

standards, programs written by different developers cannot communicate with each

other.

Openness

The distributed system mainly depends on the extent to which new resource

sharing services can be added and provided to various client programs. Only by

publishing the specifications and documents of the main software interfaces can

the opening be realized. This process is similar to standardized interfaces. The

challenge for designers is to solve the complexity of a distributed system

composed of many components designed by different people. By adding computers

to the network, the system can be expanded at the hardware level, and the software

level can be expanded by introducing new services and re-implementing the old

services, allowing applications to share resources. Another advantage of open

systems is that they are independent of various vendors.

Security

The information resources available and maintained in the distributed system are of

great value to its users. Therefore, their safety is very important. The security of

information resources consists of three components: confidentiality (preventing

unauthorized personnel from leaking), integrity (preventing tampering or damage),

and availability (preventing media from being disturbed) resources, although

firewalls can be used to provide protection against external threats Protection, but

they cannot ensure that intranet users use resources correctly, nor can they ensure

that resources are properly used on the firewall. The Internet is not protected by a

firewall.

Security

Following two security challenges:

Denial of service attacks:

A user may wish to disrupt a service for some reason. This can be achieved by

bombarding the service with such a large number of pointless requests that the

serious users are unable to use it.

Security of mobile code:

Consider someone who receives an executable program as an electronic mail

attachment: it may seem to display an interesting picture but in reality it may

access local resources.

Scalability

 From small intranets to the Internet, distributed systems can operate effectively on

many different scales. If the system is still effective with a significant increase in

the number of resources and the number of users, the system is described as

scalable. The number of computers and servers on the Internet has greatly

increased.

Fault management

A failure in a distributed system is a partial failure, that is, some components fail,

while other components continue to operate. Therefore, managing failures is

particularly difficult.

Simultaneous access

In a distributed system, multiple clients can try to access shared resources at the

same time. The process of managing shared resources can only accept one client

request at a time. But this method limits the process. As a result, services and

applications often allow multiple client requests to be processed simultaneously.

Multiple threads can run simultaneously in an object. In this case, their operations

on the object may conflict and produce inconsistent results. Any object that

represents a shared resource in a distributed system should be responsible for

ensuring that it works properly in a concurrent environment using threads

Transparency

Transparency is the concealment of the separation of components in a distributed

system by users and application programmers, so the system is regarded as a

whole, not a collection of independent components. The meaning of transparency

has a significant impact on the design of system software. To illustrate the

transparency of access, please consider a graphical user interface with folders. This

interface is the same regardless of whether the files in the folder are local or

remote. As an example of lack of access transparency, consider a distributed

system that does not allow you to access files on remote computers unless you use

an ftp program.

Service quality

The main non-functional attributes of the system that affect the quality of service

of customers and users are reliability, security and performance. In the design of

most computer systems, reliability and security issues are critical. The performance

aspects of quality of service were initially defined in terms of responsiveness and

throughput, but have been redefined in terms of the ability to meet punctuality

guarantees. For example, for movie services, continuous video images must be

displayed to users within certain specified time limits.

Question4: The design of distributed systems can be described and discussed in

three ways i.e Physical Model, Architectural Model and Fundamental Model.

Describe the example of distributed system in Question1 with respect to these three

models.

ANS: There are three important complementary ways to describe and discuss the

design of distributed systems:

Physical model

The physical model is the most definite way to describe the system. They capture

the hardware of the system from the perspective of computers (and other devices,

such as mobile phones) and their interconnected networks.

Architectural model

The architectural model describes the system in terms of calculation and

communication tasks performed by the computing elements of the system. The

computing element is a single computer or a collection of it supported by an

appropriate network interconnection.

Fundamental Model

The basic model uses abstract views to examine all aspects of the distributed

system. Three important aspects of distributed systems: interaction model, failure

model and; security model,

Physical model The physical model is a representation of the underlying hardware

elements of a distributed system, which is free from the specific details of the

computer and network technology used. Basic physical model: A distributed

system is a system in which hardware or software components located on a

networked computer communicate and coordinate their actions only by

transmitting messages. This leads to the smallest physical model of a distributed

system, which is a set of scalable computer nodes interconnected by a computer

network for the required delivery of messages. In addition to this basic model,

there are three generations of distributed systems. Early distributed systems,

Internet-wide distributed systems, contemporary distributed systems,

Architecture model: A system structure based on individually specified

components and their interrelationships. The purpose is to ensure that the structure

meets current and future possible requirements. The main concern is to make the

system reliable, manageable, adaptable and profitable. The architectural design of a

building has similar aspects-it not only determines its appearance, but also its

overall structure and architectural style (classic, modern), and provides a consistent

frame of reference for the design.

Architectural element: Communication entity: From a system perspective, the

entity communicating in a distributed system is usually a process, combined with

an appropriate inter process communication paradigm, but from a programming

perspective, this is not yet not enough, more problem-oriented abstractions have

been proposed. Objects: Objects are introduced to allow and encourage the use of

object-oriented methods in distributed systems. Components: Because distributed

objects have many important problems, the use of component technology has

emerged. Components look like objects because they provide problem-oriented

abstractions for building distributed systems and can also be accessed through

interfaces. The difference is that in addition to interfaces, components also make

all dependencies explicit and provide contracts. The construction of the system is

more complete. This allows third parties to develop components, and also

promotes a more pure combination approach to build distributed systems by

eliminating hidden dependencies.

Fundamental Model

Basic model the basic model should contain only the basic elements that must be

considered in order to understand and reason about certain aspects of system

behavior. The purpose of this model is to explain all relevant assumptions on the

system we are modeling. Given these assumptions, generalize what is possible or

impossible. The generalization can take the form of general algorithms or

guaranteed desired attributes. Interaction model: A distributed system consists of

many processes that interact in complex ways. For example: multiple server

processes can cooperate with each other to provide services, such as the domain

name system. Simple programs are controlled by algorithms, and the steps in these

algorithms are executed strictly in order and executed as a single process. A

distributed system composed of multiple complex processes. Their behavior and

state can be described by distributed algorithms, and the steps can be the

transmission of messages between them. Messages are transmitted between

processes to pass information between them and coordinate their activities.

Question5: For the purpose of Inter Process Communication (IPC) in distributed

systems, in what situation you will use UDP and TCP and why?

ANS: Messaging between a pair of messages can be supported by two message

communication operations (send and receive), one process sends the message to

the target, and the other process sends the message to the target. This activity may

involve synchronizing the two processes. Synchronously, the sending and

receiving processes are synchronized with each message. In this case, sending and

receiving are blocking operations. Each time a send is sent, the sending process (or

thread) is blocked until the corresponding receipt is sent. Each time a process (or

thread) sends a received message, the received message will hang until the

message arrives. In asynchronous, the use of the sending operation is not blocked,

and once the message has been copied to the local buffer and the transmission of

the message continues in parallel with it, the sending process can continue.

Sending process. Receive operations can have blocking and non-blocking

variables.

UDP and TCP.

The socket comes from BSD UNIX, but it also exists in most other versions of

UNIX, including Linux as well as Windows and Macintosh OS. IPC involves

transferring messages between a socket in one process and a socket in another

process. For a process to receive a message, it must link its socket to a local port

and one of the Internet addresses of the computer that is running. Messages sent to

a specific Internet address and port number can only be received by the process

whose socket is associated with that Internet address and port number.

UDP

Datagrams sent by UDP can be transmitted without confirmation or retry. If it fails,

the message may not arrive. To send or receive messages, the process must first

create a socket that is linked to the Internet address and local port of the local host.

The server binds its socket to the server port-it is a port known by the client so that

the client can send messages to it. The client binds its socket to any available local

port. In addition to the message, the receive method also returns the sender's

Internet address and port so that the receiver can send a reply. The following are

some issues related to datagram communication: Message size: The receiving

process must specify the specific size of the message. If the message is too large, it

will be truncated on arrival. Any application that requires messages larger than the

maximum number of messages should divide it into fragments of this size.

Blocking: Sockets usually provide non-blocking transmission and blocking

reception for datagram communication. After the send operation passes the

message to the basic UDP and IP protocols, the send operation returns, and these

protocols are responsible for transmitting the message to its destination. This

method will receive blocks until a datagram is received, unless a timeout has been

defined on the socket. If the process has other tasks to do while waiting for the

message, it should use a separate thread. Expiration time: The server waiting for

the server to receive the client's request can use the permanently suspended

receiving information. However, in some programs, it is not appropriate to wait

indefinitely for the process of calling the receiving operation in the case where the

sending process may crash or the expected message may be lost. In order to meet

these requirements, a failure time can be set on the socket. Choosing the right time

interval is difficult, but it must be large relative to the time required to send the

message. Receive from all content: The receive method does not specify the source

of the message. Instead, the call to receive sends a message to its socket from any

source. The receive method returns the sender's Internet address and local port, so

that the recipient can verify the source of the message. The datagram socket can be

connected to a remote port and a specific Internet address, in which case the socket

can only send and receive messages from that address. Failure model for UDP

datagrams: Messages may be deleted from time to time due to checksum errors or

because there is no available buffer space at the source or destination. Sometimes

the mail may be sent by the sender's order. Applications that use UDP datagrams

must provide their own checks to obtain the required reliable communication

quality. Use of UDP For some applications, you can use services that may cause

occasional omission failures. For example, DNS and VOIP are implemented

through UDP. UDP datagrams are sometimes an attractive option because they are

not affected by the overhead costs associated with guaranteed messaging. There

are three main sources of overhead: the need to store state information at the

source and destination; the transmission of additional messages; and the delay of

the sender.

TCP

The TCP API from BSD 4.x UNIX provides an abstraction of the byte stream

where data can be written and read from. The abstraction of the flow masks the

following network characteristics: Message size: The basic implementation of the

TCP flow determines the amount of data to be collected before transmitting data in

the form of one or more packets. Upon arrival, the data will be transferred to the

application as required. Lost messages: The TCP protocol uses an

acknowledgement scheme to reliably deliver messages. Flow control: The TCP

protocol attempts to match the speed of processes that read and write in the flow.

Message repetition and classification: The message identifier is associated with

each IP packet, which allows the recipient to detect and reject duplicates, or

reorganize messages that did not arrive in the order of the sender. Message target:

A pair of communication processes establish a connection before they can

communicate on the stream. After the connection is established, these processes

only need to read and write to the stream without using the Internet address and

port. Establishing a connection involves connecting the client to the server's

request, and then accepting the server's request to the client before any

communication can take place. For a single client server request and response, this

may represent a considerable overhead. When a pair of processes establish a

connection, one of them plays the role of client and the other plays the role of

server, but then they can become peers. The client role involves creating a stream

socket linked to any port, and then creating a connection request to request a

connection to the server on its server port. The server role includes creating a

listening socket linked to the server port and waiting for the client to request a

connection. The listening socket maintains a queue of incoming connection

requests. In the socket model, when the server accepts the connection, a new

stream socket will be created for the server to enable it to communicate with the

client, while keeping its socket on the server port to listen for Connection requests

from other clients. A pair of client and server sockets are connected by a pair of

streams, one in each direction. Therefore, each socket has an input stream and an

output stream. One of these two processes can send information to the other by

writing to its output stream, and the other process can get information by reading

from its input stream. When the application closes the socket, it indicates that it no

longer writes data to its output stream. All data from the output buffer will be sent

to the other end of the stream and placed in the queue of the target socket to

indicate that the stream has been interrupted. The target process can read data from

the queue, but any further reading after the queue is empty will indicate the end of

the stream. When a process ends or fails, all its sockets will eventually be closed,

and any process that attempts to communicate with it will find that its connection

has been disconnected. The following are some outstanding issues related to

streaming communications: Data element matching: Two communications

processes must agree on the content of data transmitted on the stream. For

example, if a process writes an in in the stream and then a double, the reader at the

other end must read an in and then a double. When a pair of processes cannot

properly cooperate when using a stream, the reading process may encounter errors

in interpreting data, or may crash due to insufficient data in the stream. Blocking:

Data written to the stream remains in the queue on the target socket. When the

process attempts to read data from the input channel, it either retrieves the data

from the queue or suspends until the data becomes available. If the socket on the

other end queues as much data as the protocol allows, then the process of writing

data to the stream can be prevented by the TCP flow control mechanism. Thread:

When the server accepts the connection, it usually creates a new thread to

communicate with the new client. The advantage of using a separate thread for

each client is that the server can block while waiting for input without delaying

other clients. Failure model • to meet the integrity of reliable communications,

TCP flows use checksums to detect and reject damaged packets and

