ID NO :17008

29,june,2020

Submit by : SAMiULLAH

Submitted to : SIR MUHAMMAD KHALiD HAMiD

Question 1:-
A slit of width a is illuminated by white light.
(a) For what value of a will the first minimum for red light of $\lambda=650 \mathrm{~nm}$ be at $\theta=15^{\circ}$?
(b) What is the wavelength λ^{\prime} of the light whose first side diffraction maximum is at 15°, thus coinciding with the first minimum for the red light?
Solution:-
(a) At the first minimum, $m=1$ in equation $[a \sin \theta=m \lambda$, for $m=1,2,3, \ldots]$. Solving for a, we then find
$a=m \lambda / \sin \theta$
$=(1)(650 \mathrm{~nm}) /\left(\sin 15^{\circ}\right)$
$=2511 \mathrm{~nm}$
$\approx 2.5 \mu \mathrm{~m}$
Therefore, the value of a the first minimum for red light of $\lambda=650 \mathrm{~nm}$ be at $\theta=15^{\circ}$ would be $2.5 \mu \mathrm{~m}$. For the incident light to flare out that much $\left(\pm 15^{\circ}\right)$ the slit has to be very fine indeed, amounting to about four times the wavelength. Note that a fine human hair may be about 100 $\mu \mathrm{m}$ in diameter.
(b) This maximum is about halfway between the first and second minima produced with wavelength λ^{\prime}. we can find it without too much error by putting $m=1.5$ in equation [a $\sin \theta=m \lambda$, for $m=1,2,3, \ldots]$, obtaining $a \sin \theta=1.5 \lambda^{\prime}$
Solving for λ^{\prime} and substituting known data give
$\lambda^{\prime}=a \sin \theta / 1.5$
$=(2511 \mathrm{~nm})\left(\sin 15^{\circ}\right) / 1.5$
$=430 \mathrm{~nm}$
From the above observation we conclude that, the wavelength λ^{\prime} of the light whose first side diffraction maximum is at 15° would be 430 nm . Light of this wavelength is violet. the first side maximum for light of wavelength 430 nm will always coincide with the first minimum for light of wavelength 650 nm , no matter what the slit width. If the slit is relatively narrow, the angle θ at which this overlap occurs will be relatively large, and conversely.

Examples
Q. A straight, horizontal stretch of copper wire has a current $i=28 \mathrm{~A}$
through it. What are the magnitude and direction of the minimum
through it. What are the magnitude and direction of the minimum
magnetic field needed to suspend the wire, i.e to balance its weight?
Its linear density is $46.6 \mathrm{~g} / \mathrm{m}$. Ans. $1.6 \times 10^{2 \mathrm{~T}}$

शQात及

- Nifeke: What are the magnitude and direction of the minimum magnetic gravitational force on itllook at the image)
Atequllbrium
$F=F g$
$\mathrm{FB}=\mathrm{Fg}$
At equilibrium
$\mathrm{FB}=\mathrm{Fg}$
LB $\sin \theta=m g$
$=1.6 \times 10-2 \mathrm{~T}$ (this is the answer)

ITHINK I HAVE GIVEN YOU THE SOLUTION TO THE ANSWER

