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Mohr's Circles for 3-D Stress Analysis 

The 3-D stresses, so called spatial stress problem,  are usually given by the six 

stress components x, y , z , xy , yz , and zx , (see Fig. 3) which consist in a 

three-by-three symmetric matrix (stress tensor): 
  

  

(1) 

What people usually are interested in more are the three prinicipal 

stresses 1 , 2 , and 3,which are eigenvalues of the  three-by-three symmetric 

matrix of Eqn (16) ,and the three maximum shear stresses max1 , max2 , 

and max3 , which can be calculated from 1 , 2 , and 3. 

  

Fig. 3  3-D stress state represented by axes parallel to X-Y-Z 



Imagine that there is a plane cut through the cube in Fig. 3 , and the unit normal 

vector   of  the cut plane has the direction cosines vx , vy , and vz , that is 

 =(vx , vy , vz) 

(2) 

then the normal stress on this plane can be represented by 

= xv
2
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 + yv

2
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2
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 +  xyvxvy +  yzvyvz +  xzvxvz 

(3) 

There exist three sets of direction cosines, 1, 2, and 3 - the three principal 

axes, which make achieve extreme values , , and - the three 

principal stresses, and on the corresponding cut planes, the shear stresses 

vanish!  The problem of finding the principal stresses and their associated axes 

is equivalent to finding the eigenvalues and eigenvectors of the following 

problem: 

(−) =  

(4) 

The three eigenvalues of Eqn (19) are the roots of  the following characteristic 

polynomial equation: 

det(−) = 3−A2+B −C =  

(5) 

where 

 = x + y + z 

(6) 

B= xy+ yz+ xz − 2
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xy 

(8) 

In fact,  the coefficients A, B, and C in Eqn (20) are invariants as long as the 

stress state is prescribed(see e.g. Ref. 2)Therefore, if the three roots of Eqn (20) 

are, , and ,one has the following equations: 

1 +2 +3 =A 

(9) 

12+23+13 =B 

(10) 

123  =C 

(11) 

Numerically, one can always find one of the three roots of Eqn (20) , e.g. 

using line search algorithm, e.g. bisection  algorithm. Then combining Eqns 

(24)and (25),  one obtains a simple quadratic equations and therefore obtains 

two other roots of Eqn (20),  e.g. and  To this end, one can re-order the 

three roots and obtains the three principal stresses, e.g. 

1 =max(1 ,2 ,3) 



(12) 

 =min(1 ,2 ,3) 

(13) 

 =(A − 1 − 2 ) 

(14) 

  

Now, substituting , , or into Eqn (19), one can obtains the 

corresponding principal axes1, 2, or 3 , respectively. 

Similar to Fig. 3,  one can imagine a cube with their faces normal to 1, 2, or 3 . 

For example, one can do so in Fig. 3 by replacing the axes X,Y, and Z with 1, 2, 

and 3 , respectively,  replacing  the normal stresses x, y , and z  with the 

principal stresses , , and , respectively, and removing the shear 

stresses xy , yz , and zx . 

Now,  pay attention the new cube with axes 1, 2, and 3 . Let the cube be rotated 

about the axis 3 , then the corresponding transformation of stress may be 

analyzed by means of Mohr's circle as if it were a transformation of plane stress. 

Indeed, the shear stresses excerted on the faces normal to the 3 axis remain equal 

to zero, and the normal stress is perpendicular to the plane spanned 

by 1 and 2 in which the transformation takes place and thus, does not affect this 

transformation.  One may therefore use the circle of diameter AB to determine the 

normal and shear stresses exerted on the faces of the cube as it is rotated about 

the  3 axis (see Fig. 4). Similarly, the circles of diameter BC and CA may be used 

to determine the stresses on the cube as it is rotated about the 1 and 2  axes, 

respectively. 

  



 
  

Fig. 4  Mohr's circles for space (3-D) stress 

 

What if the rotations are about the axes rather than principal axes? It can be shown 

that any other transformation of axes would lead to stresses represented in Fig. 4 

by a point located within the area which is bounded by the bigest circle with the 

other two circles removed! 

Therefore,  one can obtain the maxium/minimum normal and shear stresses from 

Mohr's circles for 3-D stress as shown in  Fig. 4! 

Note the notations above (which may be different from other references), one 

obtains that 

max  = 1 

(15) 

min  = 3 

(16) 

max  = (1  − 3) = max2 

(17) 



Note that in Fig. 4,  max1 , max2 , and  max3  are the maximum shear stresses 

obtained while the rotation is about   1, 2, and 3 , respectively. 

 

 

DIMENSIONAL ANALYSIS 

Dimensional analysis is a means of simplifying a physical problem by 

appealing to dimensional homogeneity to reduce the number of 

relevant variables. It is particularly useful for presenting and 

interpreting experimental data  attacking problems not amenable 

to a direct theoretical solution checking equations establishing the 

relative importance of particular physical phenomena; • physical 

modelling. Example. The drag force F per unit length on a long 

smooth cylinder is a function of air speed U, density ρ, diameter D 

and viscosity μ. However, instead of having to draw hundreds of 

graphs portraying its variation with all combinations of these 

parameters, dimensional analysis tells us that the problem can be 

reduced to a single dimensionless relationship c f (Re) D = where cD 

is the drag coefficient and Re is the Reynolds number. In this 

instance dimensional analysis has reduced the number of relevant 

variables from 5 to 2 and the experimental data to a single graph 

of cD against Re. 

Dimensional Formula of Stress 

The dimensional formula of Stress is given by, 

[M1 L-1 T-2] 

Where, 

• M = Mass 

• L = Length 

• T = Time 

Derivation 

Stress = Force × [Area]-1 . . . . . (1) 

The dimensional formula of area = [M0 L2 T0] . . . . (2) 

Since, Force = M × a = [M] × [M0 L1 T-2] 



∴ The dimensional formula of force = [M1 L1 T-2] . . . . (3) 

On substituting equation (2) and (3) in equation (1) we 

get, 

Stress = Force × [Area]-1 

Or, Stress = [M1 L1 T-2] × [M0 L2 T0]-1 = [M1 L-1 T-2] 

Therefore, stress is dimensionally represented as [M1 L-1 T-

2]. 

Bending stresses are those that bend the beam 

because of beam self-load and external load acting on 

it. 

Bending stresses 

Bending stresses are of two types; 

1. Pure Bending 

2. Simple Bending 

 

Pure Bending: 

Bending will be called as pure bending when it occurs solely because of 

coupling on its end. In that case there is no chance of shear stress in the beam. 

But, the stress that will propagate in the beam as a result will be known as 

normal stress. Normal stress because it not causing any damages to beam. As 

shown below in the picture. 

            
Simple Bending: 

Bending will be called as simple bending when it occurs because of beam self-

load and external load. This type of bending is also known as ordinary bending 

and in this type of bending results both shear stress and normal stress in the 

beam. As shown below in the figure. 

http://www.engineeringintro.com/wp-content/uploads/2015/08/Pure-Bending-e1438735490786.jpg


 

 

    

    Assumption made in theory of pure bending 

1. The material of the beam is homogeneous1 and isotropic2. 

2. The value of Young's Modulus of Elasticity is same in tension and 
compression. 

3. The transverse sections which were plane before bending, remain 
plane after bending also. 

4. The beam is initially straight and all longitudinal filaments bend into 
circular arcs with a common centre of curvature. 

5. The radius of curvature is large as compared to the dimensions of 
the cross-section. 

6. Each layer of the beam is free to expand or contract, 
independently of the layer, above or below it. 

 

Flexure Formula 

Stresses caused by the bending moment are known as flexural or 

bending stresses. Consider a beam to be loaded as shown. 
  

https://en.wikipedia.org/wiki/Modulus_of_Elasticity
https://en.wikipedia.org/w/index.php?title=Transverse_sections&action=edit&redlink=1


                       

  

Consider a fiber at a distance yy from the neutral axis, because of 

the beam's curvature, as the effect of bending moment, the fiber 

is stretched by an amount of cdcd. Since the curvature of the 

beam is very small, bcdbcd and ObaOba are considered as 

similar triangles. The strain on this fiber is 

  

ε=cdab=yρε=cdab=yρ 

  

                 By Hooke's law, ε=σ/Eε=σ/E, then 

  

        σE=yρ;σ=yρEσE=yρ;σ=yρE 

  

which means that the stress is proportional to the distance yy from 

the neutral axis. 

  

For this section, the notation fbfb will be used instead of σσ. 

   



        

  

Considering a differential area dAdA at a distance yy from N.A., 

the force acting over the area is 

  

                         dF=fbdA=yρEdA=EρydAdF=fbdA=yρEdA=EρydA 

  

The resultant of all the elemental moment about N.A. must be 

equal to the bending moment on the section. 

  

                        M=∫dM=∫ydF=∫y(EρydA)M=∫dM=∫ydF=∫y(EρydA) 

                                              M=Eρ∫y2dAM=Eρ∫y2dA 

  

                                           but ∫y2dA=I∫y2dA=I, then 

  

                                       M=EIρorρ=EIMM=EIρorρ=EIM 

  

                                        substituting ρ=Ey/fbρ=Ey/fb 

  

                                               Eyfb=EIMEyfb=EIM 

  

                                                          then 

                                              fb=MyIfb=MyI 

  

                                                       and 



                                 (fb)max=McI(fb)max=McI 

  

               The the bending stress due beam curvature is 

                                fb=McI=EIρcIfb=McI=EIρcI 

                                           fb=Ecρfb=Ecρ 

  

                                The beam curvature is: 

                                             k=1ρk=1ρ 

where ρρ is the radius of curvature of the beam in mm (in), MM is 

the bending moment in N·mm (lb·in), fbfb is the flexural stress in 

MPa (psi), II is the centroidal moment of inertia in mm4 (in4), 

and cc is the distance from the neutral axis to the outermost fiber 

in mm (in). 

 

Section modulus  

Section modulus is a geometric property for a given cross-section used 
in the design of beams or flexural members. Other geometric properties 
used in design include area for tension and shear, radius of gyration for 
compression, and moment of inertia and polar moment of inertia for 
stiffness. Any relationship between these properties is highly dependent 
on the shape in question. Equations for the section moduli of common 
shapes are given below. There are two types of section moduli, the 
elastic section modulus and the plastic section modulus. The section 
moduli of different profiles can also be found as numerical values for 
common profiles in tables listing properties of such 

 

 

 



 

 

Application of Bending Equation in any object. 

In applied mechanics, bending (also known as flexure) 

characterizes the behavior of a slender structural element 

subjected to an external load applied perpendicularly to a 

longitudinal axis of the element. 

The structural element is assumed to be such that at least one of 

its dimensions is a small fraction, typically 1/10 or less, of the other 

two. When the length is considerably longer than the width and 

the thickness, the element is called a beam. For example, 

a closet rod sagging under the weight of clothes on clothes 

hangers is an example of a beam experiencing bending. On the 

other hand, a shell is a structure of any geometric form where the 

length and the width are of the same order of magnitude but the 

thickness of the structure (known as the 'wall') is considerably 

smaller. A large diameter, but thin-walled, short tube supported at 

its ends and loaded laterally is an example of a shell experiencing 

bending. 

In the absence of a qualifier, the term bending is ambiguous 

because bending can occur locally in all objects. Therefore, to 

make the usage of the term more precise, engineers refer to a 

specific object such as; the bending of rods, the bending of 

beams,[1] the bending of plates, the bending of shells and so on 

 

 

https://en.wikipedia.org/wiki/Applied_mechanics
https://en.wikipedia.org/wiki/Structural
https://en.wikipedia.org/wiki/Structural_load
https://en.wikipedia.org/wiki/Beam_(structure)
https://en.wikipedia.org/wiki/Closet
https://en.wikipedia.org/wiki/Deflection_(engineering)
https://en.wikipedia.org/wiki/Clothes_hanger
https://en.wikipedia.org/wiki/Clothes_hanger
https://en.wiktionary.org/wiki/shell
https://en.wikipedia.org/wiki/Bending#cite_note-Boresi-1
https://en.wikipedia.org/wiki/Bending_of_plates
https://en.wikipedia.org/wiki/Plate_theory


Internal moment of resistance 

When a beam bends under load, the horizontal fibres will change 

in length. The top fibres will become shorter and the bottom fibres 

will become longer. The most extreme top fibre will be under the 

greatest amount of compression while the most extreme bottom 

fibre will be under the greatest amount of tension. 

        

                     ] 

Application of Bending Equation in any object. 

An engineer determines the centroids of the triangular shapes of the 
stress diagram. This provides the value of the total compressive and 
tensile forces acting in the beam. These centroids are a proportional 
distance apart which is referred to as the moment arm. 

The moment arm provides the value for moments that the beam must 
resist if it is to remain structurally sound. In technical terms it is referred 
to as the      

  



                              
 

 

 

The tensile and compressive stresses result in a turning effect about the 
neutral axis. These are called moment MT and MC respectively. The 
chosen beam must be able to resist these moments with MR (internal 
moment of resistance) if it is to remain in equilibrium. 

 

ECCENTRICALLY LOADED COLUMNS: AXIAL LOAD AND 

BENDING. 

 Members that are axially, i.e., concentrically, compressed occur 

rarely, if ever, in buildings and other structures. Components such 

as columns and arches chiefly carry loads in compression, but 

simultaneous bending is almost always present. Bending moments 

are caused by continuity, i.e., by the fact that building columns are 

parts of monolithic frames in which the support moments of the 

girders are partly resisted by the abutting columns, by transverse 

loads such as wind forces, by loads carried eccentrically on column 

brackets, or in arches when the arch axis does not coincide with 

the pressure line. Even when design calculations show a member 

to be loaded purely axially, inevitable imperfections of construction 

will introduce eccentricities and consequent bending in the 

member as built. For this reason members that must be designed for 

simultaneous compression and bending are very frequent in almost 

all types of concrete structures. When a member is subjected to 



combined axial compression and moment, such as in the figure (a), 

it is usually convenient to replace the axial load and moment with 

an equal load applied at eccentricity, as in figure (b). The two 

loadings are statically equivalent. All columns may then be 

classified in terms of the equivalent eccentricity. Those having 

relatively small are generally characterized by 14 compression over 

the entire concrete section, and if overloaded, will fail by crushing 

of the concrete accompanied by yielding of the steel in 

compression on the more heavily loaded side. Columns with large 

eccentricity are subject to tension over at least a part of the 

section, and if overloaded, may fail due to tensile yielding of the 

steel on the side farthest from the load. For columns, load stages 

below the ultimate are generally not important. Cracking of 

concrete, even for columns with large eccentricity, is usually not a 

serious problem, and lateral deflections at service load levels are 

seldom, if ever, a factor. Design of columns is therefore based on 

the factored load, which must not exceed the design strength, as 

usual, i.e. The design limitations for columns, according to the ACI 

Code, Section 10.2, are as follows: 1. Strains in concrete and steel 

are proportional to the distance from the neutral axis. 2. Equilibrium 

of forces and strain compatibility must be satisfied. 3. The maximum 

usable compressive strain in concrete is 0.003. 4. Strength of 

concrete in tension can be neglected. 5. The stress in the steel is . 6. 

The concrete stress block may be taken as a rectangular shape 

with concrete stress of that extends from the extreme compressive 

fibers a distance , where is the distance to the neutral axis and 

where as defined in ACI 10.2.7.3 equal: 15 The eccentricity, , 

represents the distance from the plastic centroid of the section to 

the point of application of the load. The plastic centroid is obtained 

by determining the location of the resultant force produced by the 

steel and the concrete, assuming that both are stressed in 

compression to and , respectively. For symmetrical sections, the 

plastic centroid coincides with the centroid of the section 

The theorem of least work derives from what is known as 

Castigliano’s second theorem. So, let’s first state the two theorems 

of Carlo Alberto Castigliano (1847-1884) who was an Italian railroad 



engineer. In 1879, Castigliano published two theorems. 

Castigliano’s first theorem The first partial derivative of the total 

internal energy (strain energy) in a structure with respect to any 

particular deflection component at a point is equal to the force 

applied at that point and in the direction corresponding to that 

deflection component. This first theorem is applicable to linearly or 

nonlinearly elastic structures in which the temperature is constant 

and the supports are unyielding. Castigliano’s second theorem The 

first partial derivative of the total internal energy in a structure with 

respect to the force applied at any point is equal to the deflection 

at the point of application of that force in the direction of its line of 

action. The second theorem of Castigliano is applicable to linearly 

elastic (Hookean material) structures with constant temperature 

and unyielding supports. Note that in the above statements, force 

may mean point force or couple (moment) and displacement may 

mean translation or angular rotation. Proofs of Castigliano’s 

theorems are given at the end of this document. Without further 

due, here is the theorem of least work, a.k.a. Castigliano’s theorem 

of least work: The redundant reaction components of a statically 

indeterminate structure are such that they make the internal work 

(strain energy) a minimum. Please read the above statement 

again. It is a succinct statement of Nature’s tendency to conserve 

energy. (Or it could be interpreted as Nature prefers to be lazy1 .) 

We shall explain the proof of the theorem of least work and its 

application first by the use of a simple example shown below. A B 

P1 C P2 VA VB VC = A B P1 C P2 VA VB VC The beam shown on the 

left is statically indeterminate to the first degree. It is obvious that 

the simple determinate beam shown on the right is equivalent to 

the original beam on the left with a geometric condition 

(compatibility condition). That condition with which VB can be 

determined is that the deflection at B of the equivalent beam 

should be zero. This deflection, by Castigliano’s second theorem, is 

B B U V   =  . But we know that support B has zero vertical 

deflection. 1 It is said that it takes 43 muscles to frown and 17 

muscles to smile (hence smiling  is easier than frowning ), but 

none to do nothing. 2 Hence, the condition for determining VB 

becomes 0 B U V  =  , or VB is such as to make the total internal 



work a minimum. Note that when the first derivative of a function 

with respect to a variable and at a certain value of the variable is 

equal to zero, the function may be either a maximum or a 

minimum. Appealing to our sense of physics, we can eliminate the 

possibility that the total work can be a maximum. Hence the result: 

when Nature has its free choice, it will always tend to conserve 

energy. To give an example with two redundants (i.e. statically 

indeterminate to second degree), we can consider the following 

system. Choosing moment at A and vertical force at B as the 

redundants, we can obtain the equivalent system on the right. A P1 

P2 VA VC MA B VB = The conditions of geometry together with 

Castigliano’s second theorem state that 0 A A U M   = =  and 0 B 

B U V  = =  which simply means that the redundants M A and VB 

are such that they minimize the total internal strain energy U. 


