Name:
Muhammad Bilal Elahi ID:
15434
Department:
Computer science
Submitted to:
Sir Muhammad Amin

Full Subtractor

AIM:

Design and verify the logic circuit of Full subtractor using of Half subtractor. OBJECTIVES:

- - To understand the principle of binary subtraction.
- \quad To understand full subtractor concept.
- Use truth table and Boolean Algebra theorems in simplifying a circuit design.
- - To implement full subtractor circuit of Half subtractor

PROCEDURE:

- Collect the components necessary to accomplish this experiment.
- - Plug the IC chip into the breadboard.
- - Connect the supply voltage and ground lines to the chips. PIN7 = Ground and PIN14 $=+5 \mathrm{~V}$.
- - According to the pin diagram of each IC mentioned above, make the connections according to circuit diagram.
- - Connect the inputs of the gate to the input switches of the LED.
- - Connect the output of the gate to the output LEDs.
- Once all connections have been done, turn on the power switch of the bread-board
- - Operate the switches and fill in the truth table (Write "1" if LED is ON and " 0 " if LED is OFF Apply the various combination of inputs according to the truth table and observe the condition of Output LEDs.

Full Subtractor:

A full Subtractor is combinational circuit that performs a subtraction between three bits, considering that a â $A \ddot{Y} 1 \hat{a}^{\prime} A^{\prime} Z$ may have been borrowed by lower significant stage. The 3 inputs denote minuend, subtrahend and previous borrow, respectively. The 2 outputs are difference(D) and borrow(B).

Observation table:

A	B	BIN	D	BOUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Results and Analysis:

Verified the truth table as follows
Verified the truth table of Full Subtractor as D = 1 i.e. LED which is connected to D terminal glows when inputs are, Y, BIN Verified the truth table of Full Subtractor as BOUT = 1 i.e. LED which is connected to BOUT terminal glows when inputs are X, Y, BIN

CONCLUSION:

- - To add two bits, we require one XOR gate (IC 7486) to generate Difference and one AND (IC 7408) and NOT Gate (IC 7432) to generate Borrow.
- \quad To add three bits, we require two half subtractor.

