Department of Electrical Engineering Sessional Assignment Date: 01/06/2020 Course Details					
Course Title: Instructor:	Digital Signal Processing Sir Pir Meher Ali Shah	Module: Total Marks:	6th 20		
	Student Details				
Name:	Junaid Ur Rehman	Student ID:	11484		

	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order difference equation	Marks 6
		y(n) - 3y(n-1) - 4y(n-2) = x(n) + 2x(n-1)	
		To the input $x(n) = 4^n u(n)$.	
Q1.	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	
		y(n) = 0.6y(n-1) - 0.8y(n-2) + x(n)	
	(a)	Determine the causal signal x(n) having the z-transform	Marks 6
		$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	
Q2.		(Hint: Take inverse z-transform using partial fraction method)	
	(b)	Determine the partial fraction expansion of the following proper function	
		$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$	
		A two- pole low pass filter has the system response	Marks 4
Q.3	(a)	$H(z) = \frac{b_o}{(1 - pz^{-1})^2}$	
		Determine the values of b_0 and p such that the frequency response $H(\omega)$ satisfies the condition $H(0) = 1$ and $\left H(\frac{\pi}{4}) \right ^2 = \frac{1}{2}$.	

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$.	
Q 4	(c)	A finite duration sequence of Length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$	Marks 4
	(d)	Determine the N- point DFT of this sequence for $N \ge L$ Compute the DFT of the four-point sequence $x(n) = (0 \ 1 \ 2 \ 3)$	

Student Name: Junaid Ur Rehman

ID: 11484

Department: BE(E)

Subject: Digital Signal Processing (DSP)

Teacher : Sir Pir Meher Ali Shah

NAME # JUNAID-US-Rehmon 10 # 11484 Assignment Final term (clsp)

) 1a # $Y_{c}(n) = (1(-1)^{n} + (2(4)^{n}))$ Normally we could assume a solution in form $y_{p(n)} = lc(u)^{n}(l(n))$ We bessume that yp(n) = Kn (4)ⁿ (, (n) put it in given equation y(n) - 3y(n-1) - 4y(n-2) = x(n) + x(n)-> By putting the equation -> $kn(y)^{n+1} ((n) - 3t(n-1)(y)^{n-1} ((n-1) - 4k(n-2) (km))$ = (4)" U(n) +2(4)"-1 6U(n-1) For n=2, U = 6/3 $y p(n) = \frac{1}{3} n(y)^n U(n)$. difference So the total solution to the equation $y(n) = (i(-1)^n + (i(y)^n + \frac{1}{3} n(y)^n \cdot nz o)$

Ci and cz are determined y (0) = (1+(1 y1) =- (, + 4(, + 24 Computing above by selling y (-1) = y(-2) = 0 50 (1 + (2 = 1))-(1+4(2+ d4 =9 yos (n) = -1 (-1) -1 26 (4) + 60 (4) n 20 16) Ans # Sol# $y(2) = \chi(2)$ $1 - 0.62' + 0.82^{-2}$ X(2) = 1 \therefore 1+ (2) = $\frac{y(2)}{y(2)}$ $=\frac{1}{1-0.62'+0.82'}$ = (1-1/(2-1)+(1-2-2-1)) $H(2) = \frac{1}{1 - y_{c} 2'} + \frac{2}{1 - \frac{1}{y_{c} 2'}}$ $h(n) = \int (\frac{1}{5})^n + \partial (2/5)^n h(n)$

$$\frac{2}{3} \frac{A \#}{Sol} = \frac{1}{(1 \cdot 22^{-1})(1 \cdot 2^{-1})^{2}} = \frac{1}{(1 \cdot 22^{-1})(1 \cdot 2^{-1})^{2}} = \frac{-A}{(1 \cdot 22^{-1})} = \frac{B}{(1 \cdot 2^{-1})} + \frac{(2^{-1})}{(1 \cdot 2^{-1})^{2}} = \frac{A}{(1 \cdot 22^{-1})} = \frac{B}{(1 \cdot 2^{-1})} + \frac{(2^{-1})}{(1 \cdot 2^{-1})^{2}} = \frac{A}{(1 \cdot 22^{-1})} = \frac{B}{(1 \cdot 22^{-1})} = \frac{1}{(1 \cdot 22^{-1})^{2}} = \frac{A}{(1 \cdot 22^{-1})} = \frac{1}{(1 \cdot 22^{-1})^{2}} = \frac{1}{(1 \cdot 22^$$

$$X(2) = \frac{2^{2}}{(2-0.5)(2-1)}$$

$$P_{1}=1, P_{2}=0.5$$

$$\frac{2}{(2-1)(2-0.5)}$$

$$\frac{2}{2}=\frac{2}{(2-1)(2-0.5)}$$

$$\frac{2}{(2-1)(2-0.5)}=\frac{4}{(2-1)(2-0.5)} + \frac{1}{(2-0.5)} + \frac{1}{(2-0.5)}$$

$$\int 3(a) \quad South$$

$$A + W = 0 \quad wk \quad have$$

$$H = (b) - \frac{b}{(l - p)^{2}} = 1$$
Hence
$$bo = (1 - p)^{2}$$

$$A + W = \pi \frac{1}{4}$$

$$H = (\frac{\pi}{4}) = \frac{(1 - p)^{2}}{(1 - pe^{-j\pi/4})^{2}}$$

$$= \frac{(1 - p)^{2}}{(1 - p/12)^{2}} + jp \quad Sin \quad (\frac{\pi}{4})^{2})^{2}$$

$$= \frac{(1 - p)^{2}}{(1 - p/12)^{2}} + jp \quad Sin \quad (\frac{\pi}{4})^{2})^{2}$$

$$Hor k = \frac{(1 - p)^{2}}{(1 - p/12)^{2} + p/12}^{2} = \frac{1}{2}$$

$$The value q P = 0.52 \quad Solidified this equation
H(2) = $\frac{0.46}{(1-0.322^{-1})}$ obvies.

$$\frac{(3)(6)}{(2-0.322^{-1})} = \frac{(2-1)(2+1)}{(2-1)(2+1)}$$

$$\frac{(2-1)(2+1)}{(2-1)(2+1)} = \frac{(2-1)(2+1)}{(2-1)(2+1)}$$

$$H(2) = \frac{(2-1)(2+1)}{(2-1)(2+1)} = \frac{(2^{-1})(2+1)}{(2-1)(2+1)}$$

$$The goin factor is clubermine by evaluating the grayung $H(\infty) q$ the gibter at $\omega = \pi h$. Thus we have $H(\frac{\pi}{2}) = G = \frac{(2-1)}{2} = 1$$$$$

$$(=)$$
The halve of x is determined by evaluating H(w) at $w = 4\pi/q$. Thus we have
$$\left(\int H = \left(\frac{4\pi}{q}\right)\right)^2 = \left(\int -Y^{-1}\right)^2 = \frac{2-2}{(1+Y^{-1})^2} \frac{2-2}{(1+Y^{-1})^2} \frac{2-2}{(1+Y^{-1})^2} = \frac{1}{2}$$
Or equivalently
$$1 - 94 ((1-Y^2)^2 = 1 - 1.88 x^2 + x^4)$$
The value $f x^2 = 0.7$ Satisfied this equation. Therefore, the System Junction for the desired filter is
$$H = (2) = 0.15 = \frac{1-2^2}{(1+0)(72^2)^2}$$