
 NAME ::Sikandar Ayoub

 ID :: 16524

 SECTION ::A

 DEPARTMENT :: SOFTWARING ENGINEERING

 SUBJECT :: ORIENTED PROGRAMMING

/……………………………………………………………………………/

Question 1

Why access modifiers are used in jave ?

Access modifier in jave

 There are two types of

modifiers in Java: access modifiers and non-access

modifiers.

The access modifiers in Java specifies the

accessibility or scope of a field, method,

constructor, or class. We can change the access

level of fields, constructors, methods, and class by

applying the access modifier on it.

Four main type of jave access modifier….

• Private: The access level of a private modifier is only within the

class. It cannot be accessed from outside the class.

• Default: The access level of a default modifier is only within the

package. It cannot be accessed from outside the package. If you

do not specify any access level, it will be the default.

• Protected: The access level of a protected modifier is within the

package and outside the package through child class. If you do not

make the child class, it cannot be accessed from outside the

package.

• Public: The access level of a public modifier is everywhere. It can

be accessed from within the class, outside the class, within the

package and outside the package.

PRIVATE

The private access modifier is accessible only within

the class.

Simple example of private access modifier

In this example, we have created two classes A and

Simple. A class contains private data member and

private method. We are accessing these private

members from outside the class, so there is a

compile-time error.

Role of Private Constructor

If you make any class constructor private, you

cannot create the instance of that class from

outside the class. For example:

2) Default access modifier

If you don't use any modifier, it is treated as default

by default. The default modifier is accessible only

within package. It cannot be accessed from outside

the package. It provides more accessibility than

private. But, it is more restrictive than protected,

and public.

Example of default access modifier

In this example, we have created two packages pack

and mypack. We are accessing the A class from

outside its package, since A class is not public, so it

cannot be accessed from outside the package.

/……………………………………………………………………/

QUESTION 1

PART B

 Write a specific program of the above mentioned access

modifiers in java.

Private

The private access modifier is accessible only within the class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A

class contains private data member and private method. We

are accessing these private members from outside the class, so

there is a compile-time error.

class A{

private int data=40;

private void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

Role of Private Constructor

If you make any class constructor private, you cannot create

the instance of that class from outside the class. For example:

class A{

private A(){}//private constructor

void msg(){System.out.println("Hello java");}

}

public class Simple{

 public static void main(String args[]){

 A obj=new A();//Compile Time Error

 }

}

Default

If you don't use any modifier, it is treated as default by default.

The default modifier is accessible only within package. It cannot

be accessed from outside the package. It provides more

accessibility than private. But, it is more restrictive than

protected, and public.

Example of default access modifier

In this example, we have created two packages pack and

mypack. We are accessing the A class from outside its package,

since A class is not public, so it cannot be accessed from outside

the package.

//save by A.java

package pack;

class A{

 void msg(){System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.*;

class B{

 public static void main(String args[]){

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error

 }

}

/…………………………………………………………………………………………./

QUESTION 2

 Protected

The protected access modifier is accessible within package and

outside the package but through inheritance only.

The protected access modifier can be applied on the data

member, method and constructor. It can't be applied on the

class.

It provides more accessibility than the default modifer.

Example of protected access modifier

In this example, we have created the two packages pack and

mypack. The A class of pack package is public, so can be

accessed from outside the package. But msg method of this

package is declared as protected, so it can be accessed from

outside the class only through inheritance.

Public modifier.

The public access modifier is accessible everywhere. It has the

widest scope among all other modifiers.

/…………………………………………………………………./

Question 2

Part b

 Program of public :
• <?php

• class Car {

• // public methods and properties.
• public $model;

• public function getModel()
• {
• return "The car model is " . $this -> model;
• }
• }

• $mercedes = new Car();
• //Here we access a property from outside the class
• $mercedes -> model = "Mercedes";
• //Here we access a method from outside the class
• echo $mercedes -> getModel();

access modifiers:
<?php

class Car {

 //private
 private $model;

 public function getModel()
 {
 return "The car model is " . $this -> model;
 }
}

$mercedes = new Car();

// We try to access a private property from outside the class.

$mercedes -> model = "Mercedes benz";
echo $mercedes -> getModel();

?>

/………………………………………………………………………../

Question 3

What is inheritance and why it is used?

Inheritance:

 Inheritance is the process by which one object

acquires the properties of another object. This is

important because it supports the concept of

hierarchical classification. most knowledge is made

manageable by hierarchical (that is, top-down)

classifications.

For example

 A Golden Retriever is part of the

classification dog, which in turn is part of the

mammal class, which is under the larger class

animal. Without the use of hierarchies, each object

would need to define all of its characteristics

explicitly. However, by use of inheritance, an object

need only define those qualities that make it unique

within its class. It can inherit its general attributes

from its parent. Thus, it is the inheritance

mechanism that makes it possible for one object to

be a specific instance of a more general case. Let’s

take a closer look at this process.

Most people naturally view the world as made up of

objects that are related to each other in a

hierarchical way, such as animals, mammals, and

dogs. If you wanted to describe animals in an

abstract way, you would say they have some

attributes, such as size, intelligence, and type of

skeletal system. Animals also have certain

behavioral aspects; they eat, breathe, and sleep.

This description of attributes and behavior is the

class definition for animals.

If you wanted to describe a more specific class of

animals, such as mammals, they would have more

specific attributes, such as type of teeth, and

mammary glands. This is known as a subclass of

animals, where animals are referred to as

mammals’ superclass.

Since mammals are simply more precisely specified

animals, they inherit all of the attributes from

animals. A deeply inherited subclass inherits all of

the attributes from each of its ancestors in the class

hierarchy.

/……………………………………………………………………./

Part b:

//program.cs

class Program

{

 static void Main(string[] args)

 {

 Dog oDog = new Dog();

 Console.WriteLine(oDog.Cry());

 Cat oCat = new Cat();

 Console.WriteLine(oCat.Cry());

 Console.ReadKey();

 }

//IAnimal.cs

interface IAnimal

{

 string Cry();

}

//Dog.cs

class Dog : IAnimal

{

 public string Cry()

 {

 return "Woof!";

 }

/…………………………………………………………………../

QUESTION 4
Part a:
Polymorphism:
 In object-oriented programming,

polymorphism (from the Greek meaning "having multiple

forms") is the characteristic of being able to assign a different

meaning or usage to something in different contexts -

specifically, to allow an entity such as a variable, a function, or

an object to have more than one form.

There are several different kinds of polymorphism.

• A variable with a given name may be allowed to

have different forms and the program can

determine which form of the variable to use at

the time of execution.

For example, a variable named USERID may be

capable of being either an integer (whole

number) or a string of characters (perhaps

because the programmer wants to allow a user

to enter a user ID as either an employee

number - an integer - or with a name - a string

of characters). By giving the program a way to

distinguish which form is being handled in each

case, either kind can be recognized and

handled.

• A named function can also vary depending on

the parameters it is given.

For example, if given a variable that is an

integer, the function chosen would be to seek a

match against a list of employee numbers; if the

variable were a string, it would seek a match

against a list of names. In either case, both

functions would be known in the program by

the same name. This type of polymorphism is

sometimes known as overloading.

• Polymorphism can mean, as in the ML language,

a data type of "any," such that when specified

for a list, a list containing any data types can be

processed by a function.

 For example, if a function simply determines the

length of a list, it doesn't matter what data types

are in the list.

/……………………………………………………………………../

Part b :

/* File name : Employee.java */

public class Employee {

 private String name;

 private String address;

 private int number;

 public Employee(String name, String address, int number) {

 System.out.println("Constructing an Employee");

 this.name = name;

 this.address = address;

 this.number = number;

 }

 public void mailCheck() {

 System.out.println("Mailing a check to " + this.name + " " +

this.address);

 }

 public String toString() {

 return name + " " + address + " " + number;

 }

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String newAddress) {

 address = newAddress;

 }

 public int getNumber() {

 return number;

 }

}

Now suppose we extend Employee class as follows :

/* File name : Salary.java */

public class Salary extends Employee {

 private double salary; // Annual salary

 public Salary(String name, String address, int number, double

salary) {

 super(name, address, number);

 setSalary(salary);

 }

 public void mailCheck() {

 System.out.println("Within mailCheck of Salary class ");

 System.out.println("Mailing check to " + getName()

 + " with salary " + salary);

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double newSalary) {

 if(newSalary >= 0.0) {

 salary = newSalary;

 }

 }

 public double computePay() {

 System.out.println("Computing salary pay for " + getName());

 return salary/52;

 }

}

Now, you study the following program carefully and try to determine its

output −

/* File name : VirtualDemo.java */

public class VirtualDemo {

 public static void main(String [] args) {

 Salary s = new Salary("Mohd Mohtashim", "Ambehta, UP", 3,

3600.00);

 Employee e = new Salary("John Adams", "Boston, MA", 2,

2400.00);

 System.out.println("Call mailCheck using Salary reference --

");

 s.mailCheck();

 System.out.println("\n Call mailCheck using Employee

reference--");

 e.mailCheck();

 }

/……………………………………………………………………/

Question 5

 Abstraction

Java Abstraction Example

Abstraction, in general, is a fundamental concept to
computer science and software development. The
process of abstraction can also be referred to as

modeling and is closely related to the concepts of
theory and design. Models can also be considered
types of abstractions per their generalization of
aspects of reality.

 OR

Abstraction is one of the important concepts in OOPs. Humans

manage complexity through abstraction.

For example, people do not think of a car as a set of tens of

thousands of individual parts. They think of it as a well-defined

object with its own unique behavior. This abstraction allows

people to use a car to drive to the grocery store without being

overwhelmed by the complexity of the parts that form the car.

They can ignore the details of how the engine, transmission, and

braking systems work. Instead, they are free to utilize the object

as a whole.

A powerful way to manage abstraction is through the use of

hierarchical classifications.This allows you to layer the semantics of

complex systems, breaking them into more manageable pieces. From

the outside, the car is a single object.

 Once inside, you see that the car consists of several subsystems:

steering, brakes, sound system, seat belts, heating, cellular phone, and

so on. In t urn, each of these subsystems is made up of more

specialized units. For instance, the sound system consists of a radio, a

CD player, and/or a tape player. The point is that you manage the

complexity of the car (or any other complex system) through the use of

hierarchical abstractions.

Used in Oops

Object-oriented concepts form the heart of OOP just as they form the

basis for human understanding. It is important that you understand

how these concepts translate into programs. As you will see, object-

oriented programming is a powerful and natural paradigm for creating

programs that survive the inevitable changes accompanying the life

cycle of any major software project, including conception, growth, and

aging. For example, once you have well-defined objects and clean,

reliable interfaces to those objects, you can gracefully decommission or

replace parts of an older system without fear.

/…………………………………………………………………………………………./

Question 5::

Part b

1. package net.javatutorial;

2.
3. public abstract class Employee {

4.
5. private String name;

6. private int paymentPerHour;

7.
8. public Employee(String name, int paymentPerHour) {

9. this.name = name;

10. this.paymentPerHour = paymentPerHour;

11. }

12.
13. public abstract int calculateSalary();

14.
15. public String getName() {

16. return name;

17. }

18.
19. public void setName(String name) {

20. this.name = name;

21. }

22.
23. public int getPaymentPerHour() {

24. return paymentPerHour;

25. }

26.
27. public void setPaymentPerHour(int paymentPerHour) {

28. this.paymentPerHour = paymentPerHour;

29. }

30.

31. }

The Contractor class inherits all properties from its

parent Employee but have to provide it’s own implementation

of calculateSalary() method. In this case we multiply the

value of payment per hour with given working hours.

32. package net.javatutorial;

33.
34. public class Contractor extends Employee {

35.
36. private int workingHours;

37.
38. public Contractor(String name, int paymentPerHour, int

workingHours) {

39. super(name, paymentPerHour);

40. this.workingHours = workingHours;

41. }

42.
43. @Override

44. public int calculateSalary() {

45. return getPaymentPerHour() * workingHours;

46. }

47.

48. }

The FullTimeEmployee also has it’s own implementation

ofcalculateSalary()method. In this case we just multiply by

constant 8 hours.

1. package net.javatutorial;

2.
3. public class FullTimeEmployee extends Employee {

4.
5. public FullTimeEmployee(String name, int paymentPerHour) {

6. super(name, paymentPerHour);

7. }

8.
9. @Override

10. public int calculateSalary() {

11. return getPaymentPerHour() * 8;

12. }

13.

14. }

/………………………………………………………………………./

	/……………………………………………………………………/
	Question 5
	Abstraction
	Java Abstraction Example
	Abstraction, in general, is a fundamental concept to computer science and software development. The process of abstraction can also be referred to as modeling and is closely related to the concepts of theory and design. Models can also be considered t...
	OR

