Course Title: Instructor:

Signals \& Systems
Eng Mujtaba Ihsan

Module:
Total Marks: $\qquad$

## Student Details

Name: $\quad$ M.Salman Shahid $\quad$ Student ID: 15006

| Q1. | (a) | Show with a help of an equation that the differentiation of a function in time domain results in the multiplication by jw in frequency domain. $\begin{aligned} & \text { If } \quad \square[\square]=\square \square[\square]-\square \square[\square-\square]+\square \square[\square-\square] \\ & \quad \square[\square]=\square \square[\square]+\square[\square-\square]+\square \square[\square-\square] \end{aligned}$ <br> Produce $\mathrm{Y}(\mathrm{z})$ and $\mathrm{y}[\mathrm{n}]$ | $\begin{array}{\|l\|} \hline \text { Marks } \\ 06+08 \\ \hline \text { CLO } 3 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
| Q2. |  | $(\square)= \begin{cases}-\square / \square & -\square \leq \square \\ \square / \square & \leq \square \leq \square\end{cases}$ <br> Retrieve the Fourier series for the given function. | $\begin{aligned} & \hline \text { Marks } \\ & 10 \\ & \hline \end{aligned}$ |
|  |  |  | CLO 3 |
| Q3. |  | If $\square(\square)=\square^{+}+\square$ <br> Retrieve $\times[n]$ using inverse $Z$-transform method. | $\begin{aligned} & \text { Marks } \\ & 10 \end{aligned}$ |
|  |  |  | CLO 3 |
| Q4. |  | Express the transfer function using the given data.$\mathrm{A}=\left[\begin{array}{c} \square \end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll} \square \end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ll} \square \\ \square \end{array}\right] \quad \mathrm{D}=[0]$ | $\begin{aligned} & \hline \text { Marks } \\ & 09 \\ & \hline \end{aligned}$ |
|  |  |  | CLO 3 |
| Q5. |  | Apply Fourier transform on the signal, $\mathbf{x}(\mathbf{t})=\mathbf{e}^{-\mathrm{a}\|t\|} \mathbf{u}(\mathbf{t})$ where $\mathbf{u}(\mathrm{t})$ is a unit step function. | Marks $07$ |
|  |  |  | CLO 3 |

Q1. (a) Show with a help of an equation that the differentiation of a function in time domain results in the multiplication by pw in frequency domain.

Part (a):- Let $w(t)$ be a continuous -time signal with a fourier transform of $X(j \omega)$

$$
n(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} n(j \omega) e^{j \omega t} d \omega
$$

Differentiate "both w.r.t " $t$ "

$$
\begin{aligned}
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(j \omega) \frac{d}{d t}\left\{e^{j \omega t}\right\} d \omega \\
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(j \omega)\left\{e^{j \omega t} \cdot j \omega\right\} d \omega \\
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\{j \omega \times(j \omega)\} e^{j \omega t} d \omega \\
& f\left\{\frac{d}{d t} x(t)\right\}=j \omega *(j \omega)
\end{aligned}
$$

So we concluded from this equation that if a function is differentiated in time domain, it is multiplied by jew in firequency domain.
(b) If

$$
\begin{aligned}
& \begin{array}{l}
{[n]=2 \delta[n]-4 \delta[n-2]+28[n-3]} \\
u[n]=38[n]+8[n-1]+2 \delta[n-2]
\end{array}
\end{aligned}
$$

Produce ( 2 ) and $y$ [ $n$ ]
Sol:-

$$
\begin{aligned}
& x[z]=2-4 z^{-2}+2 z^{-3} \\
& H[z]=3+z^{-1}+2 z^{-2}
\end{aligned}
$$

Now $Y(z)=1+(z) \times n(z)$

$$
\begin{aligned}
& =\left(3+z^{-1}+2 z^{-3}\right) \times\left(2-4 z^{-2}+2 z^{-3}\right) \\
Y(z) & =6-12 z^{-2}+6 z^{-3}+2 z^{-4} 4 z^{-3}+2 z^{-4} \\
+ & 4 z^{-2}-8 z^{-4}+4 z^{-5} \\
Y(z) & =6+2 z^{-1}-8 z^{-2}+2 z^{-3}-6 z^{-4}+4 z^{-5}
\end{aligned}
$$

To find $Y[n]$ use the delay
property

$$
\begin{aligned}
Y[n] & =6 \int[n]+2 \delta[n-1]-8 \int[n-2]+2 \delta[n-3] \\
& -6 \delta[n-4]+4 \delta[n-5]
\end{aligned}
$$



$$
\begin{aligned}
& \text { Let } \\
& a_{n}=\frac{1}{x} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{0} f(x) \cos n x d n+\int_{0}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{x} \int_{-\pi}^{0}-\frac{\pi}{2} \operatorname{Cos} n x d x+\int_{0}^{\pi} \pi / 2 \cos n x d x \\
& =\frac{1}{x}\left[\pi /\left.2 \frac{\sin n x}{n}\right|_{-\pi} ^{0}+\pi /\left.2 \frac{\sin n x}{n}\right|_{0} ^{\pi}\right. \\
& =\frac{1}{n \pi}\left[\frac{-\pi}{2} \operatorname{sinn}(0)-\sinh (-\pi)\right] \\
& +\frac{\pi}{2}[\operatorname{sinn}(\pi)-\sin n(0)] \\
& =\frac{1}{n \pi}(0) \\
& a_{n}=0
\end{aligned}
$$

Now

$$
b_{n}=\frac{1}{\pi} \int_{\pi}^{\pi} \sin n n d n
$$

$$
\begin{aligned}
& =\frac{1}{x}\left[\int_{-\pi}^{0} f(x) \sin x x d x+\int_{0}^{\pi} f(x) \sin n x d x\right. \\
& =\frac{1}{\pi}\left[\int_{-\pi}^{0} \frac{-\pi}{2} \sinh x d x+\int_{0}^{\pi} \pi / 2 \operatorname{sinn} x d x\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[-\pi / g \int_{-\pi}^{0} \sin x d x+\pi / 2 \int_{0}^{\pi} \sin x d x\right] \\
& =\frac{1}{\pi}\left[\frac{-\pi}{2}-\left.\frac{\cosh n}{n}\right|_{-\pi} ^{0}+\left.\frac{\pi}{2} \frac{-\cosh n}{n}\right|_{0} ^{\frac{\pi}{2}}\right] \\
& =\frac{1}{n \pi}\left[\frac{-\pi}{2}[-\cosh (0)+\cosh (-\pi)]+\pi / 2[-\cosh (\pi)+\right. \\
& =\frac{1}{n \pi}\left[-\frac{\pi}{2}[-1+\cosh (-\pi)]+\pi / 2(-\cosh \pi+\cosh (0)\right. \\
& =\frac{\pi}{2}=\frac{1}{n \pi}\left[\frac{-\pi}{2}-1[-1+\cos n(-\pi)]+1[-\cos n n+1]\right. \\
& =\frac{1}{2 x}[1-\cosh \pi-\cos n \pi+1] \\
& =\frac{1}{2 x}[2-2 \cos n \pi]
\end{aligned}
$$

Now

$$
b x= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{4}{2 n} & \text { if } n \text { is odd }\end{cases}
$$

$$
b_{n}=\frac{4}{2 n}
$$

$$
f(n)=a_{0}+a_{1} \cos n+a_{2} \cos 2 n+a_{3} \cos 3 n+
$$

$+b_{1} \sin x+b_{2} \sin 2 x+b_{3} \sin 3 x$

$$
\left.\begin{array}{rl}
f(n) & =\left\{\begin{array}{cc}
-\pi / 2 & -\pi \leq n \leq 0 \\
\pi / 2 & 0 \leq n \leq \pi
\end{array}\right. \\
a_{0} & =\frac{1}{2 \pi} \int_{0}^{\pi} f(n) d n \\
& =\frac{1}{2 \pi}\left[\int_{-\pi}^{0} f(n) d n+\int_{0}^{-\pi} f(n) d n\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{0} \frac{-\pi}{2} \int_{-\pi}^{0} d n+\int_{0}^{\pi} \frac{n}{2} d n \\
& =\frac{1}{2 \pi}\left[\frac{-\pi}{2} \int_{-\pi}^{0} 2 d n+\frac{\pi}{2} \int_{0}^{x} 1 d n\right] \\
& =\frac{1}{2 \pi}\left[\left.\frac{-\pi}{2} x\right|_{-\pi} ^{0}+\left.\frac{\pi}{2} n\right|_{0} ^{n}\right] \\
& =\frac{1}{2 \pi}\left[\frac{\pi}{2}[0-(-\pi)+\pi / 2[\pi\right. \\
& =\frac{1}{2 \pi}\left[\frac{-\pi}{2}(\pi)+\frac{\pi}{2}(\pi)\right] \\
& \left.=\frac{1}{2 \pi}\left[\frac{-\pi}{2}\right]+\frac{\pi}{2}\right] \\
& =\frac{1}{2 \pi}\left[\frac{0}{2}\right]=a
\end{array}\right]
$$

Q3. If $X(z)=2 z^{2}+2 z /\left(z^{2}+2 z-3\right)$
Retrieve $x[n]$ using inverse $Z$-transform method.

$$
\begin{align*}
& n(z)=\frac{2 z^{2}+2 z}{z^{2}+2 z-3} \\
&=\quad n(z)=\frac{2 z(2 z+2)}{z^{2}+2 z-3} \\
&=\quad \frac{n(z)}{2 z}=\frac{z+1}{(z-1)(z+3)} \\
&=\frac{2 z+2}{\left(z^{z+1}\right)(z+3)}=A(z+2  \tag{i}\\
&=\frac{A}{(z-1)}+\frac{B}{(z-3)} \tag{ii}
\end{align*}
$$

Puling $z=-3$ in eq (ii)

$$
\begin{aligned}
2(-3)+2 & =A(-3+3)+B(-3-1) \\
-6+2 & =A(0)+B(-4) \\
\frac{-y}{-x} & =\frac{B(-y)}{-y} \\
B & =1
\end{aligned}
$$

Now put $t=1$ in eq is

$$
\begin{aligned}
2(1)+2 & =A(1+3)+B(1-1) \\
2+2 & =A(4)+B(0) \\
4 & =A 4+0 \\
A & =1
\end{aligned}
$$

Now put value of $A \& B$ in eq (i)

$$
\begin{aligned}
\frac{2 z+9}{(z-1)(z+3)} & =\frac{1}{(z-1)}+\frac{1}{(z-3)} \\
n(z) & =\frac{z}{z-1}+\frac{z}{z+3}
\end{aligned}
$$

Inverse $z$-transform these are wot in a table so

$$
\begin{aligned}
& x[n]=\frac{z}{z-1}+\frac{z}{z+3} \\
& f(k]=k[k]+1 \cdot 3^{k}
\end{aligned}
$$

| QL. | Apply Fourier transform on the signal, $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-\mathrm{a}\|\mathrm{t}\|} \mathrm{u}(\mathrm{t})$ where $\mathrm{u}(\mathrm{t})$ is a unit step <br> function. | Marks <br> 07 |
| :--- | :--- | :--- | :--- |
|  | CLO 3 |  |

Solution:-

$$
n(j w)=?
$$

Continuous - Time fourier
Transform of a signal $x(t)$ is given by

$$
\begin{aligned}
x(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
x(j \omega) & =\int_{-\infty}^{\infty} e^{-a|t|} e^{-j \omega t} d t \\
e^{-a|t|} & =\int_{-\infty}^{e^{-a t}} e^{-a(-t)}=e^{a t} \text { for } t<0 \\
x(j \omega) & =\int_{-\infty}^{0} e^{a t} e^{-j \omega t} d t+\int_{0}^{\infty} e^{-a t} e^{j \omega t} d t \\
w & =e_{0}^{0} e_{0}^{(a-j \omega) t} t_{0}^{-(a+j \omega) t}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{e^{(a-j \omega) t}}{a-j \omega}\right|_{-\infty} ^{0}+\left.\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right|_{0} ^{\infty} \\
& =\frac{1}{(a-j \omega)}\left[e^{0}-e^{-\infty}\right]-\frac{1}{(a+j \omega)}\left[e^{-\infty}-e^{0}\right] \\
& =\frac{1}{(a-j \omega)}[1-0] \frac{1}{(a+j \omega)}\left[0-\frac{1}{a+j \omega}\right. \\
& =\frac{1}{(a-j \omega)}[0-1] \\
& =\frac{a+j \omega+a-j \omega}{a^{2}-(j \omega)^{2}} \\
& (j \omega)=\frac{2 a}{a^{2}+\omega^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Express the transfer function using the given data. } \\
& A=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D=[0]
\end{aligned}
$$

WM:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D=[0] \\
& \text { Sol:- } a_{11}=C(S I-A)_{B+0}^{-1} \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[S\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]\right]^{-1}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+[0] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]-\left[\begin{array}{cc}
-2 & -1 \\
1 & 0
\end{array}\right]\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+[0] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{cc}
\delta+2 & 1 \\
-1 & 5
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]+[0] \\
& =\left[\begin{array}{ll}
1 & 2
\end{array}\right] \frac{1}{s(s+2)+1} \times\left[\begin{array}{cc}
s & -1 \\
1 & s+2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{s^{2}+2 s+1}\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
s \\
1
\end{array}\right] \\
& =\frac{1}{s^{2}+2 s+1}[s 2]
\end{aligned}
$$

