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Q1.  (a)  Consider the signal g(t), a periodic train of rectangular pulses of duration 0.25 seconds and period of 1 

second. This even signal is described analytically over one period as:  

  
(a) Using the complex exponential Fourier series coefficients, determine the amplitude spectrum 
and the power spectrum of g(t).  
(b) Determine what portion of the power lies within the main lobe and also find the frequency W, 
where W is an integer, so about 96% of the power lies in the frequency range [–W, W].  

Marks 5  
CLO 2  

(b)  A signal is Fourier transformable if it satisfies the Dirichlet’s conditions.  What 
are these conditions for Fourier Transform Pair?  

Marks 5  
CLO 2  

Q2.  (a)  Fourier Transform for Periodic Signals in a strict mathematical sense does not exist, as 
periodic signals are not energy signals. Consider the periodic signal g(t) with period T0. Define 
the periodic signal g(t) using the generating function p(t), where p(t) equals g(t) over one 
single period and is zero elsewhere.  

Marks 5  
CLO 2  

(b)  Determine the Fourier transform of g(t) = sinc(t)?  Marks 5  

CLO 2  
Q3.  (a)  “The bandwidth of a signal reflects a range of positive frequencies with significant spectral 

content”. Keeping this statement in view classify atleast four types of bandwidths, 
considering B=f2 –f1, where f2≥f1≥0.  

Marks 5  

CLO 2  

(b)  The impulse response of an LTI system is h(t)=u(t)-u(t-2). Determine the output signal y(t) 
provided that the input signal is x(t)=u(t)-u(t-3).  

Marks 5  
CLO 2  

Q4.  (a)  “Convolution is an input-output relationship in time domain”. Denotes the convolution 
operation. Write and prove equation for the convolution integral function y(t) is response to 
convolution input x(t)and impulse response h(t).  

Marks 5  
CLO 2  

(b)  Marks 5  

5 0   



The frequency response of an LTI system is   

  
Determine the output signal in the time domain provided that the input signal 
is  

  

CLO 2  

Q5.  (a)  Differentiate between distortion less transmission and non-linear distortion.   Marks 5  
CLO 2  

(b)  Differentiate between low-pass filter, high-pass filter, band-pass filter and band-stop filter   Marks 5  

CLO 2  
  

 

Q1.a. Consider the signal g(t), a periodic train of rectangular pulses of duration 0.25 seconds and 
period of 1 second. This even signal is described analytically over one period as:  

  
(c) Using the complex exponential Fourier series coefficients, determine the amplitude 
spectrum and the power spectrum of g(t).  
Determine what portion of the power lies within the main lobe and also find the frequency W, 

where W is an integer, so about 96% of the power lies in the frequency range [–W, W]. 

Sol:- 



 

 

 

 

 



Q1.b. A signal is Fourier transformable if it satisfies the Dirichlet’s 

conditions.  What are these conditions for Fourier Transform Pair? 
 A signal is Fourier transformable if it satisfies the Dirichlet’s conditions. These 

conditions, which are sufficient but not strictly necessary, are as follows: 

i) The signal is single-valued, with a finite number of maxima and minima and a finite number 

of discontinuities in any finite time interval. ii) The signal is absolutely integrable over the 

entire time, i.e. 

∫ |𝑔(𝑡)|𝑑𝑡 < ∞
∞

−∞

 

 

 Note that a sinc function does not satisfy Dirichlet’s condition, as it is not absolutely integrable, 

yet it possesses the Fourier transform. Also, certain signals do not have Fourier transforms in 

the ordinary sense, but their Fourier transforms can be obtained in the limit. The physical 

existence of a signal (i.e., a signal with finite energy) is a sufficient condition for the existence 

of its Fourier transform. We can now define the Fourier transform of a signal as follows: 

𝐺(𝑓) = 𝐹[𝑔(𝑡)] = ∫ 𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 

 

Where F denotes the linear operator of the Fourier transform, j= √−1, and the variable t 

denotes time measured in seconds (s), and the variable f denotes frequency measured in Hertz 

(Hz). The inverse Fourier transform, through which the original signal in the time domain can 

be recovered, is as follows: 

 

𝐺(𝑡) = 𝐹−1[𝐺(𝑓)] = ∫ 𝐺(𝑓)𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞

 

 

 

 Where 𝐹−1denotes the linear operator of the inverse Fourier transform. It is important to note 

that G (f) is the spectral density per unit bandwidth, but in practice it is customarily called the 

spectrum of g (t) rather than spectral density of g (t). We call G (f), the Fourier spectrum of g 

(t), as a lowercase letter denotes a time function and an uppercase letter denotes a function in 

frequency. A signal is uniquely defined by either its time-domain representation or its 

frequency domain representation; a change in one results in a change in the other. A shorthand 

notation for the Fourier-transform pair is as follows: 

G (t)>G (f) 

 

 

 

 

 

 

 



Q2.a. Fourier Transform for Periodic Signals in a strict mathematical sense 

does not exist, as periodic signals are not energy signals. Consider the 

periodic signal g(t) with period T0. Define the periodic signal g(t) using the 

generating function p(t), where p(t) equals g(t) over one single period and is 

zero elsewhere.  

 
The Fourier transform of a periodic signal, in a strict mathematical sense, does not exist, as 

periodic signals are not energy signals. In a limiting sense, Fourier transform can be defined 

for complex exponentials. As such, the Fourier transform of a periodic signal can be obtained 

through the Fourier transform of its complex exponential Fourier series term by term. To this 

effect, all periodic signals have a common feature in that their Fourier transforms consist of 

delta functions. Thus, the delta (impulse) function, which does not exist physically and is not 

defined explicitly, can provide a unified method of describing periodic signals in the frequency 

domain. 

Consider the periodic signal g (t) with period T0. We can then define the periodic signal g(t) 

using the generating function p(t), where p(t) equals g(t) over one single period and is zero 

elsewhere, as shown by: 

 

𝑔(𝑡) = ∑ 𝑝(𝑡 − 𝑚𝑇𝑜)

∞

𝑛=0

 

On the other hand, this periodic signal can be r represented in terms of the complex exponential 

Fourier series: 

𝑔(𝑡) = ∑ (𝑐𝑛 exp(
𝑗2𝜋𝑛𝑡

𝑇𝑜
))

∞

𝑛=−∞

 

𝑐𝑛 = (
1

𝑇𝑜
) ∫  𝑔(𝑡) exp (

𝑗2𝜋𝑛𝑡

𝑇𝑜
)𝑑𝑡

𝑡𝑜/2

−𝑡0/2

= 𝑓𝑜 ∫ 𝑃(𝑡) exp(−𝑗2𝜋𝑛𝑓𝑜𝑡) 𝑑𝑡 = 𝑓𝑜𝑃(𝑛𝑓𝑜)
𝑥

−𝑥

 

Where Cn is the complex coefficient, P (f) is the Fourier transform of p(t), and 𝑓𝑜=1/𝑇𝑜. As the 

RHS of  indicates, the samples of the Fourier transform of the generating function at multiples 

of the fundamental frequency 𝑓𝑜 and the complex exponential Fourier series coefficients of the 

periodic function are linearly related. Substituting and combining the result with yields the 

following: 

 

𝑔(𝑡) = ∑ 𝑝(𝑡 − 𝑚𝑇𝑜 = 𝑓𝑜 ∑ 𝑃(𝑛𝑓𝑜)exp (𝑗2𝜋𝑛𝑓𝑜𝑡)

∞

−∞

∞

𝑚=−∞

 

Where it is known as Poisson’s sum formula. Noting the Fourier transform of an exponential 

function is a delta function, the Fourier transform of the periodic signal g (t) is then as follows: 

 

𝑔(𝑡) = ∑ 𝑝(𝑡 − 𝑚𝑇𝑜) ↔ 𝐺(𝑡) = 𝑓𝑜 ∑ 𝑃(𝑛𝑓𝑜)𝛿(𝑓 − 𝑛𝑓𝑜)

∞

−∞

∞

−∞

 

 



This highlights the fact that the Fourier transform of a periodic 

signalconsistsofdeltafunctionsoccurringatintegermultiplesofthefundamental frequency, 

including the origin, and each delta function is scaled by a factor equal to the corresponding 

value of P (n𝑓𝑜). Note that the non-periodic generating function p(t), constituting one period of 

g(t), has a continuous spectrum, but the periodic g(t ) has a discrete spectrum. In other words, 

periodicity in the time domain results in a discrete spectrum defined at integer multiple of the 

fundamental frequency. 

Note that for an infinite sequence of uniformly spaced delta functions, we have p (t) =𝛿(𝑡) 

And we thus have P (f) =1. We can have the following interesting relation: 

 

∑ 𝛿(𝑡 − 𝑚𝑇𝑜) ↔ 𝑓𝑜

∞

𝑚=−∞

∑ 𝛿(𝑓 − 𝑛𝑓𝑜)

∞

𝑛=−∞

 

Note that if 𝑇𝑜=1(𝑖.𝑒.,𝑓𝑜=1)
 then an infinite sequence of uniformly spaced delta functions in the 

time domain is its own Fourier transform. 

 

 

Q.2.b Determine the Fourier transform of g (t) = sinc (t)? 
 

We know we have the following transform pair: 

(𝑢 (𝑡 +  
1

2
) - (𝑡 −  

1

2
)  ) ↔ 𝑠𝑖𝑛𝑐(f) 

By using the duality property of the Fourier transform, we get the following 

Sinc (t)  ↔ (𝑢 (−𝑓 + 
1

2
) -u (−𝑓 − 

1

2
)  ) 

 

Since (𝑢 (−𝑓 + 
1

2
) -u (−𝑓 − 

1

2
)  ) is an even function, we then have the following: 

 

Sinc (t)  ↔ (𝑢 (𝑓 +  
1

2
) -u (𝑡 − 

1

2
)  ) 

 

 

 

 

 

 

 

 

 

 

 



Q.3.a. “The bandwidth of a signal reflects a range of positive frequencies with 

significant spectral content”. Keeping this statement in view classify at least 

four types of bandwidths, considering B=f2 –f1, where f2≥f1≥0. 

 
Bandwidth is a very important measure of performance in digital communication systems 

.Never the less, the term bandwidth is usually used loosely .It is thus critical to provide an 

accurate definition and a quantitative description of band width. The definitions of bandwidth 

for signals also apply to systems. The bandwidth of a signal reflects a range of positive 

frequencies with significant spectral content. All practical signals are time-limited and their 

spectra thus extend to infinity. It is therefore not clear as to how to determine what part of the 

spectrum constitutes a significant amount of energy or power of the signal. Clearly, it is 

difficult to have a universally accepted definition of bandwidth, as signals and their applications 

vary significantly. However, there are many definitions that are commonly used. 

 

It is important to note that shifting the spectral content of a low pass signal by a sufficiently 

large frequency—through a process known as modulation—to produce its corresponding 

bandpass signal has the effect of increasing the bandwidth of the signal. The term bandwidth, 

denoted by B, may be defined, as 

The difference (in Hz) between two nominal frequencies, 𝑓1 𝑎𝑛𝑑𝑓2 ,i.e., B= 𝑓2 - 𝑓1 ,where 

𝑓2  ≥ 𝑓1 ≥ 0 and 𝑓2   and 𝑓1   are determined by one of the following definitions of bandwidth. 

 

Absolute Bandwidth  

 Absolute bandwidth provides a theoretical definition. Assuming the spectrum is zero 

beyond𝑓2  ≥ 𝑓1 ≥ 0, we have. B=𝑓2-𝑓1 . Absolute bandwidth can be applied to frequency-

limited signals and ideal lowpass and bandpass filters. No absolute bandwidth can be defined 

for high-pass filters, As.,𝑓2 → ∞ and consequently B→ ∞. In essence, for all realizable signals 

and filters, the absolute bandwidth is infinite. 

 

3-dB (or Half-Power) Bandwidth 

The3-dB (or half-power) band width is one of the widely-used definitions. Assuming the 

maximum (peak) value of the magnitude spectrum occurs at a frequency inside the band [𝑓1, 𝑓2], 

we have B=𝑓2-𝑓1 , where the magnitude spectrum at any frequency inside the band falls no 

lower than 1/√2 times the peak value. The signal power at  𝑓1 𝑎𝑛𝑑𝑓2 is thus  

3 (≅ −20𝑙𝑜𝑔10(1/√2) dB lower than the peak signal power. However, this definition becomes 

ambiguous when the magnitude spectrum has multiple peaks. With this definition, the 

bandwidth can be easily read from a plot of magnitude spectrum. However, it may not be quite 

representative when the magnitude spectrum has slowly decreasing tails 

 

Fractional-Power Bandwidth 

The occupied bandwidth, as adopted by FCC, defines a band off frequencies with 99% of the 

signal power, where 0.5% of the signal power is above the upper-frequency limit and 0.5% of 

the signal power is below the lower-frequency limit. This definition is primarily focused on 

passband signals and filters. However, for low pass signals and filters, the definition may be 

modified to include 1% of the signal power above the upper frequency limit (𝑓2), as the signal 

power below the lower-frequency limit (𝑓1 = 0) is zero. 



 

Null-to-Null (Zero-Crossing) Bandwidth  

The null-to-null (zero-crossing) bandwidth is a commonly-used definition. For band pass 

signals, when the magnitude spectrum has a main lobe (the lobe with the peak value) bounded 

by nulls (the frequencies 𝑓1 𝑎𝑛𝑑𝑓2 at which the magnitude spectrum is zero), we have B=𝑓2-𝑓1  

, as the main lobes centered on the frequency 𝑓𝑐= (𝑓2+𝑓1)/2. For low pass signals, we have 𝑓1 =

0 (i.e., only one half of the width of the main spectral lobe is the bandwidth). Note that the null-

to-null bandwidth can be easily read from a plot of magnitude spectrum. 

 

Q.3.b The impulse response of an LTI system is h(t)=u(t)-u(t-2). Determine 

the output signal y(t) provided that the input signal is x(t)=u(t)-u(t-3). 

 

Solution  
After substituting h(t) and x(t) 

 

 

 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏) 𝑑𝜏
∞

−∞

 

 

 

= ∫ 𝑢(𝜏)𝑢(𝑡 − 𝜏) 𝑑𝜏 −
∞

−∞

∫ 𝑢(𝜏)𝑢(𝑡 − 2 − 𝜏) 𝑑𝜏 − 
∞

−∞

∫ 𝑢(𝜏 − 3)𝑢(𝑡 − 𝜏) 𝑑𝜏 + ∫ 𝑢(𝜏 − 3)𝑢(𝑡 − 2 − 𝜏) 𝑑𝜏
∞

−∞

 
∞

−∞

 

 

= t u(t)-(t-2) u(t-2) – (t-3) u(t-3) + (t-5) u(t-5),  

X[t] h[t] and y[t] are all shown below 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Q.4.a. Convolution is an input-output relationship in time domain”. Denotes 

the convolution operation. Write and prove equation for the convolution 

integral function y(t) is response to convolution input x(t)and impulse 

response h(t). 

 
Convolution is the input-output relationship in the time domain. By convolution, the output y 

(t) in an LTI system can be derived from the input x (t) and the impulse response h (t). It can 

be shown that the output y (t) can be derived as follows: 

 

 

 

𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏) 𝑑𝜏 = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏) 𝑑𝜏
∞

−∞

= ℎ(𝑡) ∗ 𝑥(𝑡)
∞

−∞

 

Where * denotes the convolution operation. Equation (3.72) is called the convolution integral, 

and shows that y (t), which is the response to x (t), is the convolution of the input x (t) and the 

impulse response h (t). Note that y (t) is nonzero for the interval that is the sum of the intervals 

during which x (t) and h (t) are nonzero. In other words, if x (t) is limited to the time interval 

[a, b] and h (t) is limited to the time interval [c, d], y (t) is then limited to the time interval  

[a+c, b+d]. Reflects the fact that the present value of the output signal is a weighted integral 

over the past history of the input signal, weighted according to the impulse response of the 

system. In a way, the impulse response h (t) acts as a memory function for the system. For a 

causal LTI system, there can be no output prior to the time t=0. Therefore, the lower limit of 

the integration can be changed to zero. Foran LTI system, the impulse response h (t) contains 

all the information needed, and thus completely characterizes the system 

 

 

Q.4.b. The frequency response of an LTI system is   

  
Determine the output signal in the time domain provided that 

the input signal is 

 

Solution 
The Fourier transform of the input signal is as follows: 

 

X(f) =
1

1 + 𝑗2𝜋𝑓
 

 

We then determine the Fourier transform off) the output signal: 

 

Y (f) = X (f) H (f) =(
1

2+𝑗2𝜋𝑓
) (

1

1+𝑗2𝜋𝑓
)= 

1

(2+𝑗2𝜋𝑓)(1+𝑗2𝜋𝑓)
=

1

1+𝑗2𝜋𝑓
−

1

2+𝑗2𝜋𝑓
 

 

 



The inverse Fourier transform is as follows 

 

Y(t)=𝑒−𝑡𝑢(𝑡) − 𝑒−2𝑡𝑢(𝑡) = (𝑒−𝑡 − 𝑒−2𝑡)𝑢(𝑡) 

 

 

 

Q.5.a. Differentiate between distortion less transmission and non-linear 

distortion. 

 Distortionless Transmission:- 
   

It is of paramount interest that in a communication channel the output signal be an exact 

replica of the input signal; after all, that is the ultimate goal in signal transmission. It is 

therefore important to determine the characteristics of a communication system that 

allows no distortion. In a distortion less transmission, the input and output signals in the 

time domain have identical shapes, except for a possible change of amplitude and a 

constant delay. In other words, for the input signal x (t) transmitted through a distortion 

less channel, the output signal y (t) is defined by: 

 

𝑌(𝑡) = 𝑘𝑥(𝑡 − 𝑡𝑑) 

Where the constant 𝑘 < 1 reflects the transmission attenuation, and the constant  

𝑡𝑑 > 0  accounts for the transmission delay, as a transmission medium always 

introduces an attenuation, no matter how small, and a delay, no matter how short. By 

applying the Fourier transform. We get the following 

 

𝑦(𝑓) = 𝑘𝑋(𝑓)𝑘𝑒−𝑗2𝜋𝑓𝑡𝑑  

The transfer function of a distortion less channel H (f) is then defined as follows: 

 

H(f) =
𝑌(𝑓)

𝑋(𝑓)
= 𝑘𝑒−𝑗2𝜋𝑓𝑡𝑑  

 

It indicates that in order to achieve distortion less transmission through a channel, the 

magnitude response of the channel must be a constant and the phase response must be a linear 

function of frequency that passes through the origin. In other words, the following two 

requirements must be satisfied over the frequency band of interest (the band of frequencies that 

the spectrum of the transmitted signal exists): 

 

[H(f)=k] 

 

< 𝐻(𝑓) = 𝛽(𝑓) = −2𝜋𝑓𝑡𝑑 

 

When the magnitude response of the channel [H(f)] not constant over the frequency band of 

interest, we have magnitude distortion (i.e., the frequency components of the input signal 

experience different amounts of attenuation, or possibly gain). Also, when the phase response 

of the channel 𝛽 (𝑓) is not linear with respect to the frequency inside the band of interest, we 

have phase distortion (i.e., the components of different frequencies undergo different amounts 

of delay). Interestingly, the human ear is insensitive to phase distortion, but relatively sensitive 



to amplitude distortion. However, the human eye is more sensitive to time delay, rather than 

amplitude distortion. 

 

 
 

Non liner Distortion:- 
A nonlinear system cannot be described by a transfer function, as a change in the input signal 

may not directly produce a corresponding change in the output signal. We assume here the 

system is memoryless in the sense that the output 𝑦 (𝑡) depends only on the input 𝑥 (𝑡) at time 

t. To evaluate the nonlinear distortion, the common procedure is to approximate the input-

output relation, also known as the transfer characteristics, by a power series of the input 𝑥 (𝑡): 
 

Y(t)=𝑎1𝑥(𝑡) + 𝑎2𝑥2(𝑡) + 𝑎3𝑥3(𝑡) + ⋯ 

 

Assuming 𝑋(𝑓) is the Fourier transform of 𝑥(𝑡), the Fourier transform becomes as follows: 

 

Y(f)=𝑎1𝑋(𝑓) + 𝑎2𝑋(𝑓) ∗ 𝑋(𝑓) + 𝑎3𝑋(𝑓) ∗ 𝑋(𝑓) ∗ 𝑋(𝑓) + ⋯ 

 

 

Where * denotes the convolution operation. Assuming x (t) is band-limited to WHz, x2 (t)is 

band-limited to 2WHz, x3(t) is band-limited to 3WHz, and soon and  so forth .The 

nonlinearities have thus created new output frequency components that are not present in the 

input. With appropriate filtering, these out-of-band frequency components ([f] ≥W) can be 

suppressed. However, the second-, third-, and the higher-order nonlinearities all produce 



undesirable in-band frequency components ([f] ≤W). Since these frequency components, 

which lie in the frequency band of interest, cannot be removed, we have nonlinear distortion. 

 

Q.5.b. Differentiate between low-pass filter, high-pass filter, band-pass 

filter and band-stop filter   
 

An ideal filter exactly passes signals at certain sets of frequencies and completely rejects the 

rest 

The most common types of filters are 

1. Low pass filter 

2. High pass filter 

3. Band pass filter 

4. Band stop filter 

 

Figure 

 

1. Low pass filter 

 

 
 

2. High pass Filter 

 

 



3. Band pass filter 

 

 
 

4. Band stop filter 

 

 


