Department of Electrical Engineering Assignment Date: 14-04-2020

	Course Details		
Course Title: <u>Electro Magnetic Field Theory</u> Instructor:	Module: Total Marks:	30	
	Student Details		
Name: Kiramat Ullah	Student ID:	13290	

Q1: Solve the	(a)	Transform the vector $B = yi (x + z)j$ located at point (-2,6,3) into	Marks 2
following short		cylindrical coordinates	CLO 1
Question			
	(b)	Convert the point (3,4,5) from Cartesian to spherical coordinates	Marks 2
			CLO 1
	(c)	Find the spherical coordinates of A(2,3,-1)	Marks 2
			CLO 1
	(d)	Find the Cartesian coordinates of B(4.25,120)	Marks 2
			CLO 1
	(e)	Find the force between two charges when they are brought in	Marks 2
		contact and separated by 4cm apart, charges are 2nC and -1nC, in $\mu N.$	CLO 2
	(f)	Find the electric field intensity of two Charges -2C and -1C separated	Marks 2
		by a distance 1m in air	CLO 2
	(g)	Determine the charge that produce an electric field strength of 40	Marks 2
		v/cm at a distance of 30cm in vacuum (in 10^{-8} c)	CLO 2
	(h)	A charge of $2 * 10^{-7}$ C is acted upon by a force of 0.1N. determine	Marks 2
		the distance to the other charge of $4.5 \ast 10^{-7}$ C, both the charges are in vacuum	CLO 2
Q2:	(a)	Find the angle between the vectors shown in figure.	Marks 4

(1) ID 13290 STUDENT NAME # KIRAMATULLAH ID NO # 13290 COURSE TITLE # Electoo Magnetic Field Theory DEPARTMENT # BEE TEACHER Name # Dr. Rafiar Mansood

Kisamatullah (2) ID 13290		
QNO1 Past (A)		P
Trans form The Vector By; (2+2); located at point (-2, 6, 3) into cylindrical Coordinates.		
Solutions-		
B=yi(n+2)j	_	1
Given points avethat (-2, 6, 3)	1	ſ
then, we know B=y; (xj+Zj)		
$B = y \chi j + y z j$	-	
$\Rightarrow f = \int \chi^2 + y^2$		-
$f = [(-2)^2 + (6)^2$		l
P = 140		
$\frac{P}{P} = 6.32$		R
As we know that		
Z = Z so		P
$\overline{z}=3$		

(3) ID 13290 Kizamatullah As we know that L \$ = tan (6/-) $\phi = \tan^{-1}(-3)$ $\phi = -71.56$ so then, B=(6.32f, -71.56¢, 32) Ant QNO 1 Part (B) Convect the point (3,4,5) from cartesian to spherical coordinates. Solution :-At Point (3,4,5) x=3, y=4, 2=5 Inhenspherical Coordinates System 0,0,0 $y = \int x^2 + y^2 + z^2$

Kisamatullah (4) ID 13290 $\chi = [3^2 + 4^2 + 5^2]$ 8= 9+16+25 8= 50 8= 7.07 As we know that 0=tan-1 (1/2) 0 = tan-1 (4/3) Q = tan-1 (1.33) 0 = 53·1° ts we know that, $\phi = \tan^{-1} \left(\frac{\chi^2 + y^2}{Z} \right)$ $\phi = \tan^{-1} \left(\frac{5^2 + 4^2}{5} \right)$ $\phi = \tan^{-1} \left(\frac{19 + 16}{5} \right)$ A PARTY $\phi = \tan^{-1}\left(\frac{125}{5}\right)$

Kisamatullah (5) ID 13290 $\phi = \tan^{-1}\left(\frac{5}{5}\right)$ $\phi = \tan^{-1}(1)$ Ø=¥ 45 8=7.07, 0=53.1°, \$=45 Ans _X_ QNO 1 Part (C) Find The spherical coordinates of A(2,3,-1) Solution :-(×, O, \$) These noe find=? As 8 = /2 + 42 + 22 $\delta = \left[2^2 + 3^2 + (-1)^2\right]$ 8 = 14 8 = 3.741

Kisamatullah ID 13290 (6) 0 =tan-1 (4/2) $0 = \tan^{-1}(3)$ $0 = \tan^{-1}(1.5)$ 0 = 56.3° As we know that ? $\int \pi^2 + y^2 i$ $\phi = \tan^{-1} \left(\int \pi^2 + y^2 i \right)$ $\phi = \tan^{-1} \left(\int 2^2 + 3^2 \right)$ $\phi = \tan^{-1} \left(\sqrt{\frac{4+9}{-1}} \right)$ $\phi = \tan^{-1}\left(\frac{13}{-1}\right)$ $\phi = \tan^{-1}(-3.60)$ Ø === 74.41 8=3.74, 0=56.3°, 0=74.4 Ansy -X.

Kizamatullah (7) ID 13290 QNO 1 Part (D) Find the costesian Coordinates of B(4,25,120) Solution :-The point of B = (4, 25, 120)is given in spherical $(3, 6, \phi)$ so we have to find the (n, y, z)Now x = VSinQ · COSB $\chi = 4 \sin(25) \cdot \cos(120)$ $\chi = 4(0.42)(-0.5)$ n = -0.84 As we know that, y = & sin O. sind $y = 4 \sin(2S) \sin(120)$ 4 = 4 (0.42) (0.86) 4 = 1.45

(8) ID13290 As we know? \$ Z = 8 cos0 $Z = 4 \cos(2S)$ 7=4 (0.90) Z = 3.62(x, y, Z) = (-0.84 ¥ 1.45, 3.62 An En -X-Question NO 1 Porot (E) Find the tosse between two chaoges -20 and when they are brought contact and Seperated by 4cm apart chaoges are 2nc and -Inc , in UN. Solutions-Given data :- $Q_{1} = 2nc$, $Q_{2} = -1nc$ d = 4cmRegulised = F ?

Kisamatullah Solution: (9) ID 13290 Where, $F = K \frac{\varphi_1 \varphi_2}{\chi^2}$ As we know $K = \frac{1}{4\pi\epsilon_0}$ F=2×10-9 × -1×10-9 4 (3.14) × 8.85× 10-12× (4× 10-2)2 F = -1 . 124 × 10-5 F = - 1124UN Any QNO 1 Part (F) Find the electric field Intensity of two charges - 20 end -10 separated by a distance 1m in air Solution:-Given cladas- $Q_1 = -2C$, $Q_2 = -1C$ distance d = 1 m in air

Kisamatullah (10) ID 13290 Required E = ? Solution :- $E_1 = \frac{KQ_1}{Q^2}$: K= 9×109 $E_{1} = \frac{9 \times 10^{9} \times -2}{(1)^{2}}$ E, = -18 × 109 V/m Now, when $E_2 = \frac{K Q_2}{d^2}$ $E_2 = 9 \times 10^9 \times (-1)$ E 2 = -9 × 109 Ym Its we know that, $E_T = E_1 + E_2$ $E_T = -18 \times 10^9 + (-9 \times 10^9)$ ET = -18×109 - 9×109 ET = - 27 X109 V/m Any ×

(11) ID 13290 Kizamatullah QN01 Past (G) Determine the charge that Produce an electic field strongth of 40 V/cm at a distance of 30 cm in Vacuum (in 10-8 c). Give data :-E=40 /cm , d= 30cm Required Q=? Solution :-E = KQEd'=KQ =) $= \frac{Ed^2}{K} = Q \longrightarrow ev(0)$ Now putting values in ev(0) = $Q = Ed^2$ $= \frac{40 \times (30)^2}{9 \times 10^9}$

Kixamatullah (12) ID 13290 $\Rightarrow G = \frac{40 \times 900}{9 \times 10^9}$ $=> [Q = 4 \times 10^{-6} c]$ $Q = 4 \mu c$ OR => Ansh QNOI Past (H) A chaoge of 2x107 is acted upon by a force of 0.1N. Determine the distance to the other charge of 4.5 70-7 c, both The charges are in vaccum Given datas Q1=2×107C . F=0.1N Q2 = 405×107 C K= 9×109 Required d =? Solution: By using formula the then, $F = K = \frac{Q_1 Q_2}{12}$ d2 d2 = K 91,92

(13) 1D 13290 Now putting the value d2=9×109 (2×10-7) (4.5×10-7 $d^{2} = 0.0081$ $d^{2} = 0.0081$ As Paking under root on both sides fdz = 10.0081 d = 0.09 mED BONDE O BE $\frac{\left[d=9\times10^{-2}\,\mathrm{m}\right]}{\mathrm{oR}}$ - 10 7.10 + OR d = 9cm Ansy OUXPER OF OTXING UP -Indition a? att addartarant? PR.

(24) ID 132,90 Kisamatullah Question NO 2 Part (a) Aswer ? Solution:-A= J 3intiy A A= Bixtiy A=2 B= 2°x . 0=300 A.B=23 J= 3in + iy 1A1 = 2 B = dix B =2 A.B = 213 Now A.B = |A]|B] COSOAB COS OAB = A.B [A] [B] 259 $Q_{AB} = \cos^{-1}$ 23 12/12/

Kroamatullah (15) ID 13290 $O_{AB} = 30^{\circ}$ Any Question No 2 Past (B) trswer Find Gradient (i) $f = ax^2 + by^3 = 2$ Solution: $f = ax^2 + by^3 2$ $\nabla f = \left(\frac{\partial i}{\partial x} + \frac{\partial j}{\partial y} + \frac{\partial k}{\partial z}\right) \left(\frac{\partial x^2 + by^3 z}{\partial z}\right)$ $\nabla f = \frac{\partial}{\partial x} a x^{2}i + \frac{\partial}{\partial y} b y^{3} z j + \frac{\partial}{\partial z} b y^{3} z k$ $\frac{\partial}{\partial x} \partial y \partial y \partial z + \frac{\partial}{\partial z} b y^{3} z k$ $\nabla f = 2ani + 3b_2 y^2 i + by^3 k$ 50 we find $\nabla f = \partial \alpha \chi^{2} + 3b \neq y^{2} + by^{3} k$ Ans

Kisomatullah (16) ID 13290 ii) 7=ax2 sin 0 +b82cos20 Solution :-=> Gradinent the case of Spherical:-=> $\nabla f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f$ => $\nabla f = \frac{2}{3} \left(\alpha \delta^2 \sin \phi + b \delta 2 \cos 2 \phi \right) \delta / \delta$ $\implies \frac{\partial}{\partial \phi} \left(a \delta^2 \sin \phi + b \delta Z \cos 2 \phi \right) \dot{\phi} + \frac{1}{\delta \sin \phi}$ $\frac{\alpha}{\delta\phi} \left(\alpha\delta^2 \sin\phi + b\delta z \cos 2\phi\right)\phi$ => $\nabla f = (2absin \phi + b2cos 2\phi)^{2} + \frac{1}{6}(0)$ $+\frac{1}{8sin0}\left(a\delta^{2}\cos\phi-2b\delta^{2}sin\phi\right)\phi$ when, => $\nabla f = (2\alpha ss^{\circ}n\phi + bz\cos 2\phi)^{\circ}s + \frac{1}{8s^{\circ}n\phi}$ $(av^2 \cos \phi - bvz \sin \phi)\phi$ => Gradient case with Cylindoical 8- $\nabla f = \frac{\partial f}{\partial P} \hat{P} + \frac{1}{P} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial Az}{DZ}$

Kixamatullah (17) ID 13290 $\Rightarrow \nabla f = 0 \hat{P} + \frac{1}{P} (\alpha \delta^2 \cos \phi - 2b\delta z \sin \theta) + (\alpha \delta \cos 2\phi) \hat{z}$ => so that the first tom will Ze70 (0). Then $\nabla f = \frac{1}{P} \left(a \delta^2 \cos \phi \right) - 2 b \delta 2 \sin 2 \phi \right) \dot{\phi}$ +(bocosp)2Ams Question No 3 Answey 20 Ē2 EI Tb $\vec{E}_{2+}\vec{E}_{3}$ -91 The second 20

Kisamatullah (19) ID 13290 $= K(2Q) (2 \cos (Q))$ $= \frac{1}{E_{1+2}} = \frac{4 \text{ KQ Cos O}}{b^2 + a^2} \rightarrow ew(1)$ => These fore the electric field with poin 'P' due to charge 'Q'. The charge is negative and electric field with point will be directed towards charge "-Q". $= E_A = -K(Q)$ Therefore electric field at point 'p' will be As, $\Rightarrow \overrightarrow{E}_{\text{Net}} = \overrightarrow{E}_{A} + \overrightarrow{E}_{2} + \overrightarrow{E}_{2}$ $= -K(Q) + 4KQ \cos \Theta$ b² b² + a² $= -KG(a^{2}+b^{2}) + 4KGb^{2}cosO$ $b^{2}(a^{2}+b^{2})$

Rivamatallah (20) ID 13290 $= KQ + b^{2} (a^{2}+b^{2}) + b^{2} cosQ - (a^{2}+b^{2})$ = Therefor, K = 9x109 Nm2 C² = $E_{\text{Net}} = 9 \times 10^9 \text{ G} \left[4b^2 \cos \Theta - (a^2 + b^2) \right]$ So, $Q = \tan^{-1}\left(\frac{q}{b}\right)$ Now, $\frac{1}{E_{\text{Net}}} = \frac{9\times10^{9}}{B^{2}(a^{2}+b^{2})} \left[\frac{4b^{2}\cos[\tan^{4}(a) - (a^{2}+b^{2})]}{b^{2}(a^{2}+b^{2})} \right]$