Department of Electrical Engineering

Assignment

Date: 14-04-2020

Course Details

Course Title: Electro Magnetic Field Theory
Instructor:

Module:	
Total Marks:	30

Student Details

Name: Kiramat Ullah
Student ID: 13290

Q1: Solve the following short Question	(a)	Transform the vector $B=y i(x+z) j$ located at point $(-2,6,3)$ into cylindrical coordinates	Marks 2
			CLO 1
	(b)	Convert the point (3,4,5) from Cartesian to spherical coordinates	Marks 2
			CLO 1
	(c)	Find the spherical coordinates of $A(2,3,-1)$	Marks 2
			CLO 1
	(d)	Find the Cartesian coordinates of $\mathrm{B}(4.25,120)$	Marks 2
			CLO 1
	(e)	Find the force between two charges when they are brought in contact and separated by 4 cm apart, charges are 2 nC and -1 nC , in $\mu \mathrm{N}$.	Marks 2
			CLO 2
	(f)	Find the electric field intensity of two Charges -2C and -1C separated by a distance 1 m in air	Marks 2
			CLO 2
	(g)	Determine the charge that produce an electric field strength of 40 v / cm at a distance of 30 cm in vacuum (in $10^{-8} \mathrm{C}$)	Marks 2
			CLO 2
	(h)	A charge of $2 * 10^{-7} \mathrm{C}$ is acted upon by a force of 0.1 N . determine the distance to the other charge of $4.5 * 10^{-7} \mathrm{C}$, both the charges are in vacuum	Marks 2
			CLO 2
Q2:	(a)	Find the angle between the vectors shown in figure.	Marks 4

				CLO 1
	(b)	Find the gradient of each of the following funct are constant (i) $\begin{align*} & f=a x^{2}+b y^{3} z \\ & f=a r^{2} \sin \emptyset+ \tag{ii} \end{align*}$ $b r z \cos 2 \emptyset$	where a and b	Marks 4
Q3:		Three pointer charges are placed on the y-axis electric field at point P on the x-axis.	shown. Find the $E_{2}+E_{3}$ E_{3}	Marks 6

(1) ID 13290

Student Name\#.
KIRAMATULLAH
ID NO \# 13290
Course Title \#
Electro Magnetic Field Theory
DEPARTMENT BEE

Teacher Nome\#
Dr. Ratio
Mans00r

Q NO 1
Part (A)
Trans form The Vector Bey i $(x+z) j$; located at point $(-2,6,3)$ into cylindrical coordinates.
Solution:-

$$
B=y i(x+z) j
$$

Given points arena $(-2,6,3)$
then, we know

$$
\begin{aligned}
& B=y i(x j+z j) \\
B & =y x i j+y z i j \\
\Rightarrow P & =\sqrt{x^{2}+y^{2}} \\
P & =\sqrt{(-2)^{2}+(6)^{2}} \\
\rho & =40 \\
\rho & =6.32
\end{aligned}
$$

As we know that

$$
\begin{aligned}
z & =z \\
z & =3
\end{aligned}
$$

\rightarrow As we know that

$$
\begin{aligned}
& \phi=\tan ^{-1}(y / x) \\
& \phi=\tan ^{-1}(6 /-2)
\end{aligned}
$$

$$
\phi=\tan ^{-1}(-3)
$$

$$
\phi=-71.56
$$

so then,

$$
B=\frac{(6.32 f,-71.56 \phi, 3 z)_{\text {An\% }}}{x-}
$$

QNO 1
Part (B)
Convert the point $(3,4,5)$ from Cartesian to spherical coordinates.

Solution:-
At Point $(3,4,5)$

$$
x=3 \quad, y=4, z=5
$$

Whenspherical Coordinates System

$$
\begin{aligned}
& \text { 人, } \theta, \phi \\
& \gamma=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma=3^{2}+4^{2}+5^{2} \\
& \gamma=\sqrt{9+16+25} \\
& \gamma=\sqrt{50} \\
& x=7.07
\end{aligned}
$$

As we know that

$$
\begin{aligned}
& \theta=\tan ^{-1}(y / x) \\
& \theta=\tan ^{-1}(y / 3) \\
& \theta=\tan ^{-1}(1.33) \\
& \theta=53.1^{\circ}
\end{aligned}
$$

its we know that,

$$
\begin{aligned}
& \phi=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
& \phi=\tan ^{-1}\left(\sqrt{\frac{3^{2}+4^{2}}{5}}\right) \\
& \phi=\tan ^{-1}\left(\sqrt{\frac{9+16}{5}}\right) \\
& \phi=\tan ^{-1}\left(\sqrt{\frac{25}{5}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi=\tan ^{-1}\left(\frac{5}{5}\right) \\
& \phi=\tan ^{-1}(1) \\
& \phi=45
\end{aligned}
$$

$$
x=7.07, \theta=53.1^{\circ}, \phi=45
$$

Find the spherical coordinates of $A(2,3,-1)$

Solution:-
$(\gamma, 0, \phi)$ These are find=?
As

$$
\begin{aligned}
& x=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \gamma=\sqrt{2^{2}+3^{2}+(-1)^{2}} \\
& \gamma=\sqrt{14} \\
& \gamma=3.74
\end{aligned}
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}(y / x) \\
& \theta=\tan ^{-1}(3 / 2) \\
& \theta=\tan ^{-1}(1.5) \\
& \theta=56.3^{\circ}
\end{aligned}
$$

As we know that?

$$
\begin{aligned}
& \phi=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
& \phi=\tan ^{-1}\left(\frac{\sqrt{2^{2}+3^{2}}}{-1}\right) \\
& \phi=\tan ^{-1}\left(\sqrt{\frac{4+9}{-1}}\right) \\
& \phi=\tan ^{-1}\left(\sqrt{\frac{13}{-1}}\right) \\
& \phi=\tan ^{-1}(-3 \cdot 60) \\
& \phi=74.4
\end{aligned}
$$

$$
\gamma=3.74, \theta=56.3^{\circ}, \phi=74.4
$$

Q No 1
Part (D)
Find the cartesian coordinates of $B(4,25,120)$
Solution:-
The point of $B=(4,25,120)$ is given in spherical ($\gamma, 0,0, \phi$) find the (x, y, z)
Now

$$
\begin{aligned}
& x=r \sin \theta \cdot \cos \phi \\
& x=4 \sin (25) \cdot \cos (120) \\
& x=4(0.42)(-0.5) \\
& x=-0.84
\end{aligned}
$$

As we know that,

$$
\begin{aligned}
& y=r \sin \theta \cdot \sin \phi \\
& y=4 \sin (25) \cdot \sin (120) \\
& y=4(0.42)(0.86) \\
& y=1.45
\end{aligned}
$$

As we know,

$$
\begin{aligned}
& y \quad z=r \cos \theta \\
& z=4 \cos (25) \\
& z=4(0.90) \\
& z=3.62 \\
&(x, y, z)=(-0.84 \neq 1.45,3.62 \\
& \text { Ans /2 }
\end{aligned}
$$

Question NO 1

Find the force between two charges $2 C$ and when they are brought contact and . separated by 4 cm apart charges are 2 nc and - Inc, in uN.

Solution:-
Given olata:-

$$
\begin{aligned}
& V_{1}=2 n c \quad, q_{2}=-1 n c \\
& d=4 \mathrm{~cm}
\end{aligned}
$$

$$
\text { Required }=F \text { ? }
$$

Kiramatullah
Solution:-
Where,

$$
F=k \frac{q_{1} q_{2}}{\gamma^{2}}
$$

As we know

$$
\begin{aligned}
& K=\frac{1}{4 \pi \varepsilon_{0}} \\
& F=\frac{2 \times 10^{-9} \times-1 \times 10^{-9}}{4(3 \cdot 14) \times 8.85 \times 10^{-12} \times\left(4 \times 10^{-2}\right)^{2}} \\
& F=-1.124 \times 10^{-5} \\
& F=-11.24 \mu \mathrm{~N}
\end{aligned}
$$

An\%M,

Find the electric field Intensity
of two charges - 2C and $-1 c$ separated by a distance 1 m in air

Solution:-
Given data:-

$$
q_{1}=-2 c, \quad q_{2}=-1 c
$$

distance $d=1 \mathrm{~m}$ in air

Required $E=$?
Solution:-

$$
\begin{aligned}
& E_{1}=\frac{k q_{1}}{d^{2}} \\
& E_{1}=\frac{9 \times 10^{9} \times-2}{(1)^{2}} \\
& E_{1}=-18 \times 10^{9} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Now, when

$$
\begin{aligned}
& E_{2}=\frac{K q_{2}}{d^{2}} \\
& E_{2}=\frac{9 \times 10^{9} \times(-1)}{(1)^{2}} \\
& E_{2}=-9 \times 10^{9} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

As we know that,

$$
\begin{aligned}
& E_{T}=E_{1}+E_{2} \\
& E_{T}=-18 \times 10^{9}+\left(-9 \times 10^{9}\right) \\
& E_{T}=-18 \times 10^{9}-9 \times 10^{9} \\
& E_{T}=-27 \times 10^{9} \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

Ans/:

QNO1
Part (G)
Determine the charge that produce an electic field strength of $40 \% / \mathrm{cm}$ at a distance 0730 cm in vacuum (in $10^{-8} \mathrm{c}$).

Give data:-

$$
E=40 \mathrm{~V} / \mathrm{cm}, d=30 \mathrm{~cm}
$$

Required

$$
Q=?
$$

Solution:-

$$
\begin{array}{ll}
\Rightarrow & E=\frac{K Q}{d^{2}} \\
\Rightarrow & E d^{2}=K Q \\
\Rightarrow & \frac{E d^{2}}{k}=Q \rightarrow \operatorname{ev}(1)
\end{array}
$$

Now putting values in eq (1)

$$
\begin{aligned}
& \Rightarrow \quad Q=\frac{E d^{2}}{K} \\
& \Rightarrow \quad Q=\frac{40 \times(30)^{2}}{9 \times 10^{9}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kiramatullah (12) } \\
& \Rightarrow Q=\frac{40 \times 900}{9 \times 10^{9}} \\
& \Rightarrow Q=4 \times 10^{-6} \mathrm{C} \\
& \Rightarrow O R \quad Q=4 \mu \mathrm{C}
\end{aligned}
$$

Ans//
Q No I
Part (H)
A charge of 2×10^{-7} is acted upon by a force of 0.1 N . Determine the distance to the other charge $074.510^{-7} \mathrm{c}$, both the charges are in vaccum

Given data:-

$$
\begin{array}{ll}
Q_{1}=2 \times 10^{-7} c & F=0.1 \mathrm{~N} \\
Q_{2}=4.5 \times 10^{-7} c & K=9 \times 10^{9}
\end{array}
$$

Required $d=$?
Solution:-
By using formula then,

$$
\begin{aligned}
& F=k \quad \frac{q_{1} q_{2}}{d^{2}} \\
& d^{2}=k \frac{q_{1} q_{2}}{F}
\end{aligned}
$$

Now putting the value

$$
\begin{gathered}
d^{2}=9 \times 10^{9} \frac{\left(2 \times 10^{-7}\right)\left(4.5 \times 10^{-7}\right.}{0.1} \\
d^{2}=0.0081 \quad 8.1 \times 10^{-3}
\end{gathered}
$$

As

$$
d^{2}=0.0081
$$

Taking under root on both sides

$$
\begin{aligned}
& \sqrt{d^{2}}=\sqrt{0.0081} \\
& d=0.09 \mathrm{~m} \\
& d=9 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

or

$$
d=9 \mathrm{~cm}
$$

Ahswer
Solution:-

$$
A=\sqrt{3} i x+i y
$$

$$
\begin{gathered}
A=\sqrt{3} i x+i y \\
|A|=2 \\
B=2 i x \\
|B|=2 \\
A \cdot B=2 \sqrt{3}
\end{gathered}
$$

Now

$$
\begin{aligned}
& A \cdot B=|A||B| \cos \theta_{A B} \\
& \cos \theta_{A B}=\frac{A \cdot B}{|A||B|} \\
& Q_{A B}=\cos ^{-1}
\end{aligned}
$$

Kiramatullah (15) ID 13290

$$
\theta_{A B}=30^{\circ}
$$

Ans,
Question No 2
Answer
Find Gradient
(i) $f=a x^{2}+b y^{3} z$

Solution:-

$$
\begin{aligned}
& f=a x^{2}+b y^{3} z \\
& \nabla f=\left(\frac{\partial i}{\partial x}+\frac{\partial}{\partial y} ;+\frac{\partial}{\partial z} k\right)\left(a x^{2}+b y^{3} z\right) \\
& \nabla f=\frac{\partial}{\partial x} a x^{2} i+\frac{\partial}{\partial y} b y^{3} z j+\frac{\partial}{\partial z} b y^{3} z k
\end{aligned}
$$

Now

$$
\nabla P=2 a x i+3 b z y^{2} j+b y^{3} k
$$

So
we find

$$
\nabla f=2 a x i+3 b z y^{2} j+b y^{3} k
$$

ii) $7=a x^{2} \sin \theta+b r z \cos ^{2} \theta$

Solution:-
\Rightarrow Gradient the case of Spherical:-

$$
\begin{aligned}
& \Rightarrow \nabla 7=\frac{\partial f}{\partial \gamma} \hat{\gamma}+1 / \gamma \frac{\partial f}{\partial \phi} \hat{\theta}+\frac{1}{\gamma \sin \theta} \frac{\partial f}{\gamma \phi} \hat{\phi} \\
& \Rightarrow \nabla 7=\frac{\partial}{\partial \gamma}\left(a \gamma^{2} \sin \phi+b \gamma z \cos 2 \phi\right) \hat{\gamma} / \gamma \\
& \Rightarrow \frac{\partial}{\partial \theta}\left(a \gamma^{2} \sin \phi+b \gamma z \cos 2 \phi\right) \hat{0}+\frac{1}{\gamma \sin \theta} \\
& \frac{a}{\gamma \phi}\left(a \gamma^{2} \sin \phi+b \gamma z \cos 2 \phi\right) \phi
\end{aligned}
$$

(ts,

$$
\begin{aligned}
\Rightarrow & \nabla \vec{t}=(2 a r \sin \phi+b z \cos 2 \phi) \hat{\gamma}+1 / \gamma(0) \\
& +\frac{1}{\gamma \sin \theta}\left(a r^{2} \cos \phi-2 \Delta \gamma z \sin \phi\right) \hat{\phi}
\end{aligned}
$$

when,

$$
\begin{aligned}
\Rightarrow \nabla 7 & =(2 a r \sin \phi+b z \cos 2 \phi) \hat{\gamma}+\frac{1}{\gamma \sin \theta} \\
& \left(a r^{2} \cos \phi-b r z \sin \phi\right) \hat{\phi}
\end{aligned}
$$

$\Rightarrow \frac{\text { Gradient case with Cylindrical:- }}{\text { wit }}$

$$
\nabla f=\frac{\partial f}{\partial \rho} \rho+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi}+\frac{\partial A z}{\partial z}
$$

$$
\begin{gathered}
\\
\Rightarrow \nabla f=0 \hat{\rho}+\frac{1}{\rho}\left(a r^{2} \cos \phi-2 b r z \sin \right. \\
\Rightarrow \nabla \\
\quad 2 \phi) \hat{0}+(a \gamma \cos 2 \phi) \hat{z}
\end{gathered}
$$

\Rightarrow so that the first from will

$$
\text { zero }(0) \text {. }
$$

Then,

$$
\begin{aligned}
\nabla 7 & \left.=\frac{1}{\rho}\left(a \sigma^{2} \cos \phi\right)-2 b r z \sin 2 \phi\right) \hat{\phi} \\
& +(b r \cos \phi) z^{n}
\end{aligned}
$$

Question No 3
Answer

Solution:-
\Rightarrow Therefore, Distance between charge $2 Q$ and as point ' P ' as

$$
x^{2}=b^{2}+a^{2}
$$

Then,

$$
x=\sqrt{b^{2}+a^{2}}
$$

\Rightarrow Therefore we assume the charge 2Q make the angle of (θ) and $(-\theta)$ with x-axis. Where the magnitude of

$$
\begin{aligned}
\left|\vec{E}_{1}\right| & =\left|\vec{E}_{2}\right|=\frac{k Q}{\gamma^{2}}=\frac{K Q}{\gamma^{2}} \\
& =\frac{K(2 Q)}{\gamma^{2}} \\
& =\frac{k(2 Q)}{b^{2}+a^{2}}
\end{aligned}
$$

\Rightarrow Therefore, the result of $\overrightarrow{E_{1}}$ and $\overrightarrow{E_{2}}$

$$
\vec{E}_{1+2}=\vec{E}_{1}+\vec{E}_{2}=\vec{E}_{1 x}+\vec{E}_{2 x}
$$

\Rightarrow Component of y-will be canceled.

$$
=\frac{k(2 Q)}{b^{2}+a^{2}}(\cos (\theta)+\cos (-\theta)
$$

Kiramatullah
(19)

$$
\begin{aligned}
& =\frac{k(2 Q)}{b^{2}+a^{2}}(2 \cos (\theta) \\
& =\vec{E}_{1+2}=\frac{4 k Q \cos \theta}{b^{2}+a^{2}} \rightarrow \operatorname{eav}(1)
\end{aligned}
$$

\Rightarrow Therefore the electric field with poon ' P ' due to charge ' Q '. The charge is negative and electric field with point will be directed towards charge So,

$$
\Rightarrow \vec{E}_{A}=\frac{-K(Q)}{b^{2}}
$$

Therefore, electric field at point ' p ' will be
As,

$$
\begin{aligned}
& \Rightarrow \vec{E}_{\text {net }}=\vec{E}_{A}+\vec{E}_{1}+\vec{E}_{2} \\
& =\frac{-k(Q)}{b^{2}}+\frac{4 k Q \cos \theta}{b^{2}+a^{2}} \\
& =\frac{-k Q\left(a^{2}+b^{2}\right)+4 k Q b^{2} \cos \theta}{b^{2}\left(a^{2}+b^{2}\right)}
\end{aligned}
$$

Kixamatullan

$$
=\frac{k Q}{b^{2}\left(a^{2}+b^{2}\right)}\left[4 b^{2} \cos \theta-\left(a^{2}+b^{2}\right)\right]
$$

$=$ Therefor ,

$$
K=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
$$

$$
=\vec{E}_{\text {Net }}=9 \times 10^{9} Q\left[4 b^{2} \cos \theta-\left(a^{2}+b^{2}\right)\right]
$$

So,

$$
\theta=\tan ^{-1}\left(\frac{a}{b}\right)
$$

Now,:

$$
\vec{E}_{\text {Net }}=\frac{9 \times 10^{9} Q}{b^{2}\left(a^{2}+b^{2}\right)}\left[4 b^{2} \cos \left[\tan ^{-1}\left(\frac{a}{b}\right)-\left(a^{2}+b^{2}\right)\right]\right.
$$

