Name------ Hidayatullah

 ID------ 16495

 Section------ (B)

 Department------ BS Software Engineering

 Semester------ 2nd

 Subject------ Discrete structure

 Examination------ Mid-Term

 Date------ April 14th, 2020

 Teacher----- Muhammad Ibrar Khan

Note: Attempt all questions. Use examples and diagrams where necessary.

Q.1

Which of the following are propositions?

- a) Buy Premium Bonds!
- b) The Apple Macintosh is a 16 bit computer.
- c) There is a largest even number.
- d) Why are we here?
- e) 8 + 7 = 13
- f) a + b = 13

Answer : b) , c) and e) are propositions

Q.2

p is "x < 50"; q is "x > 40".

Write as simply as you can:

(a) $\neg p$ \Rightarrow "X is not less than 50" or "X \geq 50" (b) $\neg q$ \Rightarrow "X is not greater than 40" or "X \leq 40" (c) $p \land q$ \Rightarrow "X is less than 50 and greater than 40" (d) $p \lor q$ \Rightarrow "X is less than 50 or greater than 40" (e) $\neg p \land q$ \Rightarrow "X is not less than 50 but less than 40" (f) $\neg p \land \neg q$ \Rightarrow "X is not less than 50 and 40"

Q.3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg p$? (There may be more than one correct answer.)

(a)

p is "Some people like Maths".(a) "Some people dislike Maths"

(b) "Everybody dislikes Maths"

(c) "Everybody likes Maths"

Answer : (a) "Some people dislike Maths"

b)

p is "The answer is either 2 or 3".(a) "Neither 2 nor 3 is the answer"

(b) "The answer is not 2 or it is not 3"

(c) "The answer is not 2 and it is not 3"

Answer : (a) "Neither 2 nor 3 is the answer"

(c) "The answer is not 2 and it is not 3"

c)

p is "All people in my class are tall and thin".

(a) "Someone in my class is short and fat"

(b) "No-one in my class is tall and thin"

(c) "Someone in my class is short or fat"

Answer : (b) "No-one in my class is tall and thin"

Q.4

Construct truth tables for:

a) ¬p V ¬q

р	q	$\neg \mathbf{p}$	¬q	¬p ∨ ¬q
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

b) $q \land (\neg p \lor q)$

р	q	⊐р	(¬p ∨ q)	q∧ (¬p ∨ q)
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	F

ТТТ	Γ	Т	Т	Т
ТТТ	Г	F	Т	Т
T F	F	Т	F	Т
T F	7	F	F	F
F T	Г	Т	F	Т
F T	Г	F	F	F
F F	7	Т	F	Т
F F	7	F	F	F

(p^ q)

(p∧ q) V r

d) $(p \land q) \lor r$

q

р

р	q	r	(q V r)	$\mathbf{p} \wedge (\mathbf{q} \vee \mathbf{r})$		
Т	Т	Т	Т	Т		
Т	Т	F	Т	Т		
Т	F	Т	Т	Т		
Т	F	F	F	F		
F	Т	Т	Т	F		
F	Т	F	Т	F		
F	F	Т	Т	F		
F	F	F	F	F		

r

c) $\mathbf{p} \wedge (\mathbf{q} \vee \mathbf{r})$

Q.5

Use truth tables to show that:

 $\neg \left((p \lor \neg q) \lor (r \land (p \lor \neg q)) \right) \equiv \neg p \land q$

 $L.H.S \qquad \neg \left((p \lor \neg q) \lor (r \land (p \lor \neg q)) \right)$

p	q	r	$\neg p$	$\neg q$	⊐r	(p V ¬q)	$\neg (p \lor \neg q)$	$(r \land (p \lor \neg q))$	$\neg ((p \lor \neg q) \lor (r \land (p \lor \neg q)))$
Т	Т	Т	F	F	F	Т	F	Т	Т
Т	Т	F	F	F	Т	Т	F	F	F
Т	F	Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	Т	Т	F	F	F
F	Т	Т	Т	F	F	F	Т	F	Т
F	Т	F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	F	Т	F	Т	Т
F	F	F	Т	Т	Т	Т	F	F	F

 $R.H.S ~ \neg p \wedge q$

р	q	¬р	$\neg p \land q$
Т	Т	F	F
Т	F	F	F
F	Т	Т	Т
F	F	Т	F

Q.6

Use the laws of logical propositions to prove that:

 $(z \land w) \lor (\neg z w) \lor (z \land \neg w) \equiv z \lor w$

State carefully which law you are using at each stage.

Answer : $(z \land w) \lor (\neg z w) \lor (z \land \neg w)$	$= (\mathbf{z} \land \mathbf{w}) \lor (\mathbf{z} \land \neg \mathbf{w}) \lor (\neg \mathbf{z} \land \mathbf{w})$	Communicative Law
	$= (\mathbf{z} \land (\mathbf{w} \lor \neg \mathbf{w})) \lor (\neg \mathbf{z} \land \mathbf{w})$	Distributive Law
	= (z \land T) V (\neg z \land w)	Complement Law
	$= zV (\neg z \land w)$	Identity Law
	$= (z V \neg z) \land (z V w)$	Distributive Law
	$= \mathbf{T} \land (\mathbf{z} \lor \mathbf{w})$	Complement Law
	$= (\mathbf{z} \vee \mathbf{w}) \wedge \mathbf{T}$	Commutative Law
	$= \mathbf{z} \vee \mathbf{w}$	Identity Law

THANK YOU MY RESPECTABLE TEACHER ... !!