

Student Name: Kiramat Ullah

ID: 13290
Department: BE(E)
Subject: Probability and statistics
Semester: 8
Teacher : Sir Daud

Probability and Statistics

Sessional Assignment Spring 2020

Marks : 20

1 Answer the following: (10 $\times 02=20$ Marks $)$
(a) Mean and variance of binomial distribution is 4 and. Find n and p.
(b) If X is normally distributed with mean 12 and standard deviation 4 then find the probability if
(c) Define critical region.
(d) Write the properties of t-distribution.
(e) Write a short note on analysis of variance.
(f) Define R.B.D.
(g) Define statistical quality control.
(h) Define the terms "chance causes and assignable causes".
(i) Define traffic intensity.
(j) Write the characteristics of queuing theory.
2.
(a) Derive mean and variance of binomial distribution.
(b) A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which:
(i) Neither car is used. (ii) The proportion of days on which some demand is refused?
3. A set of 5 assembles of 15 sub-groups.

Group No.	No. of defects	Group No.	No. of defects
1	75	9	47
2	64	10	77
3	75	11	59
4	45	12	57
5	93	13	84
6	55	14	40
7	49	15	95
8	65	-	-

Draw a suitable chart and give your comment

Kiramatulan
Question No 1
Past (A)
Answer
Solution:-
As we know that
Mean $(n p)=4 \rightarrow$ Variance $^{(n p q)} \rightarrow$ (2)
Dividing the LHS and RHS of equation (ii) by equation (i)
we have
$\mathrm{Npq} / \mathrm{np}$

$$
=\frac{3}{4}
$$

Therefore,
we have $p=1-a=1-3 / 4=1 / 4$
Putting the value of $P=1 / 4$ in equation (i).

We have $n=16$

Kioamatullan
Question NO 1
Answer Part (B)

Solution:
Given:-

$$
\text { mean }=12
$$

$$
\text { standard deviation }=4
$$

Find:
Propability:- ?
Solution:-

$$
\begin{array}{ll}
\text { Mean }=\mu=n p & =12 \rightarrow(1 \\
S D=6 \sqrt{n p q} & =4
\end{array}
$$

Dividing

$$
\begin{gathered}
\frac{u}{\sigma}=\frac{n p}{\sqrt{n p q}}=\frac{x^{3}}{y_{1}} \\
\frac{n p}{\sqrt{n p q}}=3
\end{gathered}
$$

Sequaring both sides

$$
\frac{(n p)^{2}}{n p q}=(3)^{2}
$$

Kiramatullan

$$
\begin{aligned}
\frac{n^{2} p^{x}}{n p q} & =9 \\
n p & =9
\end{aligned}
$$

Now $\quad n_{p}=12$-(1)
subtracting (3) and (1)

$$
\begin{gathered}
-n p=9 q \\
\oplus n p=\oplus 12 \\
0=9 q-12 \\
9 q-12=0 \\
q=\frac{124}{q^{3}} \\
q=\frac{4}{3}>1
\end{gathered}
$$

The statement is incorrect as q can never be greater than 1.

Question No 1
Answer
Ans/ Critical Region:-
A critical region, also known as the rejection region. is a set 07 values for the test statistic for which the null hypothesis is rejected. i-e. if the observed test statistic is in the critical region then we reject the null hypothesis and accept the alternative hypothesis.

Answer
Question No 1
Answer
Part (D)

Ah w Properties of T-distribution:-

1) The t-distribution is equal to 0 .
2) The variance is equal to $v /(v-2)$ where v is the degree of freedom (see last section) and $\quad v>2$
3) The variance is always greater than 1 , although it is close to 1 when there are many degree of freedom.
4) REDMINOTE? PRO Ans //1

Analysis of variance, or ANOVA, is a statistical method that separates observed variance data into different components to use for additional tests. A one-way (ANOVA) is used $70 r$ three or more groups of data, to gain information about the relationship between the dependent and independent variables.

Ans

Question NO 1
Part (F)
Define $\operatorname{B.B}$. D:-
K BD. A diagram that gives the relationship between component: states and the success or failure of a specified system function. The logical layout in an PBD can be as series system, parallel system or a combination.
REDMI NOTE 9 PRO
Ans!
AI QUAD CAMERA

Kiramatullan
Question NO 1
Answer
Part (G)
Statistical Quality Control:-
Statistical quality control the use of statistical methods in the monitoring and maintaining 07 quality 07 products and services. One method, referred to as acceptance sampling can be used when a decision must be made to accept or reject a group of parts or items based on the quality found in a sample.

Ans
Question No 1

Answer

1) Chance Cause:-

A process that is operating with only chance causes of variation present is said to be in statistical control.
2) Assignable Cause:-

Is a type of variation in which a specific -al quad camera

Kiramatullan activity or event can be linked to inconsistency in a system.

Question
Answer
Traffic Intensity:-
A measure of the average accupancy of a facility during a specified period of time normally a busy hour, measured in traffic units (erlangs) and defined as the ratio 07 the time during which a facility is occupied (continuously or comulatively) to the time this Facility is available for occupancy.

Question 201
Answer

Characteristics of Queuing Theory:-
A aliening system is specified completely by the Following five basic characteristics The Input process. It expresses the mode of arrival of customers

Kibamatullan
Pg 8
at the service Facility governed ny some probability law. The number of customers emanate from finite or infinite sources.
Question No g

Answer
Part. (A)
Solution:-

$$
\begin{aligned}
E(x) & =\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}
\end{aligned}
$$

Since the $x=0$ term vanishes:
Let $y=x-1$ and $m=n-1$
subbing $x=y+1$ and $n=m+1$
into the last sum (and using the fact that the time limits $x=1$
and $x=n$ correspond to $y=0$ and $y=n-1=m$, respectively).

$$
\begin{aligned}
E(x) & =\sum_{y=0}^{m} \frac{(m+1)!}{y!(m-y)!} p^{y+1}(1-p)^{m-y} \\
& =(m+1) p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p(1-p)^{m-y} \\
& =n p \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p(1-p)^{m-y}
\end{aligned}
$$

The binomial theoom says that

$$
(a+b)^{m}=\sum_{y=0}^{m} \frac{m!}{y_{f}(m-y)!} a^{y} b^{m-y}
$$

Setting $a=p$ and $b=1-p$

$$
\begin{aligned}
& \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y}= \\
& \left.\sum_{y=0}^{m} \frac{m!}{y_{0}(m-y)!} a^{y} b^{m-y}=(a+b)^{m}=p+1-p\right)^{m}=1
\end{aligned}
$$ So that,

$$
E(x)=n p
$$

Similarly, but this time using

$$
\begin{aligned}
& y==x-2 \text { and } m=n-2 \\
& E(x(x-1))=\sum_{x=0}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x} \\
&=\sum_{x=0}^{n} x(x-1) \frac{n!}{x(n-x)!} p^{x}(1-p)^{n-x} \\
&=\sum_{x=2}^{n} \frac{n!}{(x-2)!(n-x)} p^{x}(1-p)^{n-x} \\
&=n(n-1) p^{2} \sum_{x=2}^{n} \frac{n!}{(x-2)(n-x)} p^{x-2}(1-p)^{n-x} \\
&=n(n-1) p^{2} \sum_{y=0}^{m} \frac{m!}{y!(m-y)!} p^{y}(1-p)^{m-y} \\
&=n(n-1) p^{2}(p+(1-p))^{m} \\
&=n(n-1) p^{2}
\end{aligned}
$$

So the variance of x is

$$
\begin{array}{r}
E(x)^{2}-E(x)^{2}=E(x(x-1))+ \\
E(x)-E(x)^{2}=n(n-1) p^{2} \\
+n p-(n p)^{2}=\mid n p(1-p)
\end{array}
$$

Question No 2

Answer
Solution :-
Let x denote number of cars hired out per day
\Rightarrow Poisson distribution mean $=m=1.5$

$$
\Rightarrow \begin{gathered}
p(x=x)=\left(\left(\left(e^{1}-m\right)\left(m^{1} x\right)\right) /(x!)\right)= \\
\\
\left(\left(\left(e^{n}-1.5\right)\left(1.5^{1} x\right)\right) /(x!)\right)
\end{gathered}
$$

1) P (neither can is used):

$$
P(x=0)=\left(e^{1}-1.5\right)\left(1.5^{1} 0\right) / 0.2231
$$

Kiramatullan
Pg 12
2) P (some demand is refused):
$\Rightarrow P$ (Demand is more than 2 cars per days) $p(x>2)$
$\Rightarrow 1-p(x \leqslant 2)$
$\Rightarrow 1-[P(x=0)+P(x=1)+P(x=2)]$
$\Rightarrow 1-\left[\left(\left(e^{n} 1 \cdot 5\right)\left(1 \cdot 5^{n} 0\right) / 0!\right)+\right.$
$\left(\left(e^{\wedge} 1.5\right)\left(1.5^{\wedge} 1\right) / 1!\right)+$
$\left.\left(\left(e^{n} 1.5\right)\left(1.5^{n} 2\right) / 2!\right)\right]$

$$
\Rightarrow 1-e^{\wedge} 1.5[1+1.5+(2.25 / 2)]=0.1912
$$

\Rightarrow Proportion of days on which neither car is used $=0.2231=22.31 \%$
\Rightarrow Proportion of days on which some demand is refused $=0.1912=19.12 \%$

Ans

Kiramatullan
Question No 3
A set of 5 assembles of 15 sub groups
Solution:-
Range: (40-93)
smallest value $=40$
largest value $=95$
For 5 assembles chart is given

Croup	Range of Detects	Frequency
1	$40-50$	4
2	$51-60$	3
3	$61-70$	2
4	$71-80$	3
5	$81-95$	3

The maximum frequency has defects b/w 71-95. The group 4 and 5 have maximum no of defects respectively as shown in chart above.

