

Paper : Programming
Fundamentals

Date and Starting
Time: 26/June/2020, 9:00 am

Program: BS (CS & SE) Uploading Date
and End Time: 26/June/2020, 3:00 pm

Teacher Name: Dr. Fazal-e-Malik Marks 50

NAME : AMAD AFRIDI

ID : 13119

CLASS : BS SE B

SUBJECT : PROGRAMMING FUNDAMENTAL

Note: Attempt all Questions. Help can be taken from net where ever is required.

Q.1
 a) What is the purpose of if statement? Discuss its two different forms with examples. 5
 b) Write a C++ program to read two numbers from keyboard and then find the

LARGEST number of them.

5

Answer1:

Q1.A: What is the purpose of if statement? Discuss its two
different forms with examples.

AnsA:This is one of the most frequently used loop in C Programming.
Syntax of for loop:

for (initialization; condition test; increment or decrement)
{
 //Statements to be executed repeatedly
}

Iqra National University Peshawar Pakistan
Department of Computer Science
Spring Semester, Final Term Exam, June 2020

Step 1: First initialization happens and the counter variable gets initialized.
Step 2: In the second step the condition is checked, where the counter variable
is tested for the given condition, if the condition returns true then the C
statements inside the body of for loop gets executed, if the condition returns false
then the for loop gets terminated and the control comes out of the loop.
Step 3: After successful execution of statements inside the body of loop, the
counter variable is incremented or decremented, depending on the operation (++
or –).

Example of For loop
#include <stdio.h>
int main()
{
 int i;
 for (i=1; i<=3; i++)
 {
 printf("%d\n", i);
 }
 return 0;
}

Q1.B: Write a C++ program to read two numbers from
keyboard and then find the
LARGEST number of them.
AnsB:

#include <iostream>

using namespace std;

int main()
{
 int num1, num2;
 cout<<"Enter first number:";
 cin>>num1;
 cout<<"Enter second number:";
 cin>>num2;
 if(num1>num2)
 {

 cout<<"First number "<<num1<<" is the largest";
 }
 else
 {
 cout<<"Second number "<<num2<<" is the largest";
 }
 return 0;
}

Q.2 a) What are the Logical Operators? Explain them

 b) Write a C++ program to get Temperature in Fahrenheit F and then find the Atmosphere
according to the below rules:

• If temperature F is above 40 degree Fahrenheit then display…………………..Very Hot.
• If temperature F is between 35 & 40 degree Fahrenheit then display………Tolerable.
• If temperature F is between 30 & 35 degree Fahrenheit then display………Warm.
• If temperature F is less than 30 degree Fahrenheit then display………….……Cool.

Answer2:

Q2.A: What are the Logical Operators? Explain them
AnsA:

The Logical Operators

Logical operators are mainly used to control program flow. Usually, you will find them as part
of an if, a while, or some other control statement

The Logical operators are:

op1 && op2
-- Performs a logical AND of the two operands.

op1 || op2
-- Performs a logical OR of the two operands.

!op1
-- Performs a logical NOT of the operand.

The concept of logical operators is simple. They allow a program to make a decision based on
multiple conditions. Each operand is considered a condition that can be evaluated to a true or
false value. Then the value of the conditions is used to determine the overall value of the op1
operator op2 or !op1 grouping. The following examples demonstrate different ways that
logical conditions can be used.

The && operator is used to determine whether both operands or conditions are true and.pl.

For example:

if ($firstVar == 10 && $secondVar == 9) {

 print("Error!");

};

If either of the two conditions is false or incorrect, then the print command is bypassed.

The || operator is used to determine whether either of the conditions is true.

For example:

if ($firstVar == 9 || $firstVar == 10) {

 print("Error!");

If either of the two conditions is true, then the print command is run.

Caution If the first operand of the || operator evaluates to true, the second operand will not be
evaluated. This could be a source of bugs if you are not careful.

For instance, in the following code fragment:

if ($firstVar++ || $secondVar++) { print("\n"); }

variable $secondVar will not be incremented if $firstVar++ evaluates to true.

The ! operator is used to convert true values to false and false values to true. In other words, it
inverts a value. Perl considers any non-zero value to be true-even string values. For example:

$firstVar = 10;

$secondVar = !$firstVar;

if ($secondVar == 0) {

 print("zero\n");

};

is equal to 0- and the program produces the following output:

zero

You could replace the 10 in the first line with "ten," 'ten,' or any non-zero, non-null value.

Q2.B: Write a C++ program to get Temperature in
Fahrenheit F and then find the Atmosphere according to
the below rules:

• If temperature F is above 40 degree Fahrenheit then

display…………………..Very Hot.
• If temperature F is between 35 & 40 degree Fahrenheit

then display………Tolerable.
• If temperature F is between 30 & 35 degree Fahrenheit

then display………Warm.
If temperature F is less than 30 degree Fahrenheit then
display………….……Cool

AnsB:

//C++ program for converting degree Celsius into Fahrenheit and vice versa

#include<iostream>

using namespace std;

int main()

{

 float fahr, cel;

 char option;

 cout << "Choose from following option:" << endl;

 cout << "1. Celsius to Fahrenheit." << endl;

 cout << "2. Fahrenheit to Celsius." << endl;

 cin >> option;

 //option for converting celsius into fahernheit

 if (option == '1')

 {

 cout << "Enter the temperature in Celsius: ";

 cin >> cel;

 fahr = (1.8 * cel) + 32.0; //temperature conversion formula

 cout << "\nTemperature in degree Fahrenheit: " << fahr << " F" << endl;

 }

 //option for converting Fahrenheit into Celsius

 else if (option == '2')

 {

 cout << "Enter the temperature in Fahrenheit: ";

 cin >> fahr;

 cel = (fahr - 32) / 1.8; //temperature conversion formula

 cout << "\nTemperature in degree Celsius: " << cel << " C" << endl;

 }

 else

 cout << "Error Wrong Input." << endl;

 return 0;

}

Q.3 a) What does Looping mean? Explain different loops in C++.

 b) Write a C++ program to read a number from keyboard and then determine whether it is
Even or Odd number?

Answer3:

Q3.A: What does Looping mean? Explain different loops in
C++.
AnsA:

In Loop, the statement needs to be written only once and the loop will be executed 10 times as
shown below.
In computer programming, a loop is a sequence of instructions that is repeated until a certain
condition is reached.

• An operation is done, such as getting an item of data and changing it, and then some
condition is checked such as whether a counter has reached a prescribed number.

• Counter not Reached: If the counter has not reached the desired number, the next
instruction in the sequence returns to the first instruction in the sequence and repeat it.

• Counter reached: If the condition has been reached, the next instruction “falls through” to
the next sequential instruction or branches outside the loop.

There are mainly two types of loops:

1. Entry Controlled loops: In this type of loops the test condition is tested before entering
the loop body. For Loop and While Loop are entry controlled loops.

2. Exit Controlled Loops: In this type of loops the test condition is tested or evaluated at the
end of loop body. Therefore, the loop body will execute atleast once, irrespective of
whether the test condition is true or false. do – while loop is exit controlled loop.

for Loop

A for loop is a repetition control structure which allows us to write a loop that is executed a
specific number of times. The loop enables us to perform n number of steps together in one line.
Syntax:
for (initialization expr; test expr; update expr)

{

 // body of the loop

 // statements we want to execute

}

In for loop, a loop variable is used to control the loop. First initialize this loop variable to some
value, then check whether this variable is less than or greater than counter value. If statement is
true, then loop body is executed and loop variable gets updated . Steps are repeated till exit
condition comes.

• Initialization Expression: In this expression we have to initialize the loop counter to some
value. for example: int i=1;

• Test Expression: In this expression we have to test the condition. If the condition evaluates
to true then we will execute the body of loop and go to update expression otherwise we will
exit from the for loop. For example: i <= 10;

• Update Expression: After executing loop body this expression increments/decrements the
loop variable by some value. for example: i++;

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20191128194516/Cpp-loops.png

Equivalent flow diagram for loop :

Example:

• C

• C++
filter_none

edit

play_arrow

brightness_4
// C program to illustrate for loop
#include <stdio.h>

int main()
{
 int i=0;

 for (i = 1; i <= 10; i++)
 {
 printf("Hello World\n");
 }

 return 0;
}
Output:
Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

While Loop
While studying for loop we have seen that the number of iterations is known beforehand, i.e. the
number of times the loop body is needed to be executed is known to us. while loops are used in
situations where we do not know the exact number of iterations of loop beforehand. The loop
execution is terminated on the basis of test condition.

Syntax:
We have already stated that a loop is mainly consisted of three statements – initialization
expression, test expression, update expression. The syntax of the three loops – For, while and do
while mainly differs on the placement of these three statements.
initialization expression;
while (test_expression)
{
 // statements

 update_expression;
}
Flow Diagram:

Example:

• C

• C++

filter_none

edit

play_arrow

brightness_4
// C program to illustrate while loop
#include <stdio.h>

int main()
{
 // initialization expression
 int i = 1;

 // test expression
 while (i < 6)
 {
 printf("Hello World\n");

 // update expression
 i++;
 }

 return 0;
}
Output:
Hello World

Hello World

Hello World

Hello World

Hello World

do while loop
In do while loops also the loop execution is terminated on the basis of test condition. The main
difference between do while loop and while loop is in do while loop the condition is tested at the
end of loop body, i.e do while loop is exit controlled whereas the other two loops are entry
controlled loops.
Note: In do while loop the loop body will execute at least once irrespective of test condition.

Syntax:
initialization expression;
do
{
 // statements

 update_expression;

} while (test_expression);
Note: Notice the semi – colon(“;”) in the end of loop.
Flow Diagram:

Example:

• C

• C++
filter_none

edit

play_arrow

brightness_4
// C program to illustrate do-while loop
#include <stdio.h>

int main()

{
 int i = 2; // Initialization expression

 do
 {
 // loop body
 printf("Hello World\n");

 // update expression
 i++;

 } while (i < 1); // test expression

 return 0;
}
Output:
Hello World

In the above program the test condition (i<1) evaluates to false. But still as the loop is exit –
controlled the loop body will execute once.

What about an Infinite Loop?
An infinite loop (sometimes called an endless loop) is a piece of coding that lacks a functional
exit so that it repeats indefinitely. An infinite loop occurs when a condition always evaluates to
true. Usually, this is an error.

• C

• C++
filter_none

edit

play_arrow

brightness_4
// C program to demonstrate infinite loops
// using for and while
// Uncomment the sections to see the output

#include <stdio.h>

int main ()
{
 int i;

 // This is an infinite for loop as the condition
 // expression is blank
 for (; ;)
 {
 printf("This loop will run forever.\n");
 }

 // This is an infinite for loop as the condition
 // given in while loop will keep repeating infinitely
 /*
 while (i != 0)
 {
 i-- ;
 printf("This loop will run forever.\n");
 }
 */

 // This is an infinite for loop as the condition
 // given in while loop is "true"
 /*
 while (true)
 {
 printf("This loop will run forever.\n");
 }
 */
}

Output:
This loop will run forever.

This loop will run forever.

...................

Q3.B: Write a C++ program to read a number from
keyboard and then determine whether it is Even or Odd
number?

AnsB:

#include <iostream>
using namespace std;

int main()
{

 int n;

 cout << "Enter an integer: ";
 cin >> n;

 if (n % 2 == 0)
 cout << n << " is even.";
 else
 cout << n << " is odd.";

 return 0;
}

Q.4 a) A) What is the purpose of using break and continue statements?

 B) Write a C++ program to find the sum of the following numbers:

1+2+3+………+10

Answer4:

Q4.A: What is the purpose of using break and continue
statements?

AnsA:

A)
The break statement in C

In any loop break is used to jump out of loop skipping the code below it without caring about
the test condition.

It interrupts the flow of the program by breaking the loop and continues the execution of
code which is outside the loop.

The common use of break statement is in switch case where it is used to skip remaining part
of the code.

for (int-exp; test-exp; update-exp)

{

 statement1;

 if (condition)

 break;

 statement2;

}

The continue statement in C

Like a break statement, continue statement is also used with if condition inside the loop to
alter the flow of control.

When used in while, for or do...while loop, it skips the remaining statements in the body
of that loop and performs the next iteration of the loop.

Unlike break statement, continue statement when encountered doesn’t terminate the loop,
rather interrupts a particular iteration.

while (test_condition)

{

 statement1;

 if (condition)

 continue;

http://www.trytoprogram.com/c-programming/c-programming-if-statement/
http://www.trytoprogram.com/c-programming/c-programming-while-and-do-while-loop/
http://www.trytoprogram.com/c-programming/c-programming-for-loop/

 statement2;

}

Q4.B:Write a C++ program to find the sum of the following
numbers:
1+2+3+………+10

AnsB:

Code to add 1+2+3….10

#include <iostream>
using namespace std;
int main()
{
 int i,sum=0;
 cout << "\n\n Find the first 10 natural numbers:\n";
 cout << "---------------------------------------\n";
 cout << " The natural numbers are: \n";
 for (i = 1; i <= 10; i++)
 {
 cout << i << " ";
 sum=sum+i;
 }
 cout << "\n The sum of first 10 natural numbers: "<<sum << endl;
}

Q.5 What is an array? Explain On-Dimensional and Two-Dimensional Arrays with
examples. 10

Answer5:

Array:

• Offers a simple way of grouping like variables for easy access
• It is a group of elements having same data type
• An array is a collective name given to a group of ‘similar

quantities’
• Arrays in C share a few common attributes

• Variables in an array share the same
name

• Variables in an array share the same data
type

• Individual variables in an array are called
elements

• Elements in an array are accessed with
an index number

• Ordinary variables are capable of holding only one value at a
time

• There are situations in which we would want to store more
than one value at a time in a single variable

Array Declaration

A one-dimensional array is a structured collection of components (often
called array elements) that can be accessed individually by specifying the
position of a component with a single index value.

Here is the syntax template of a one-dimensional array declaration:

 DataType ArrayName [ConstIntExpression];

In the syntax template,
 Data Type describes what is stored in each component of the array. Array
components may be of any type, but for now we limit our discussion to simple data
types (e.g. integral and floating types).
 ConstInt Expression indicates the size of the array declared. That is, it specifies the
number of array components in the array. It must have a value greater than 0. If
the value is n, the range of the index values is 0 to n-1. For example, the
declaration

 int number[50];

creates the number array which has 50 components, each capable of holding
one int value. In other words, the number array has a total of 50 components, all of
type int

Two dimensional (2D) arrays in C
programming with example
An array of arrays is known as 2D array. The two dimensional (2D) array in C
programming is also known as matrix. A matrix can be represented as a table of
rows and columns. Before we discuss more about two Dimensional array lets
have a look at the following C program.

Simple Two dimensional(2D) Array Example
For now don’t worry how to initialize a two dimensional array, we will discuss that
part later. This program demonstrates how to store the elements entered by user
in a 2d array and how to display the elements of a two dimensional array.

#include<stdio.h>
int main(){
 /* 2D array declaration*/
 int disp[2][3];
 /*Counter variables for the loop*/
 int i, j;
 for(i=0; i<2; i++) {
 for(j=0;j<3;j++) {
 printf("Enter value for disp[%d][%d]:", i, j);
 scanf("%d", &disp[i][j]);
 }
 }
 //Displaying array elements
 printf("Two Dimensional array elements:\n");

 for(i=0; i<2; i++) {
 for(j=0;j<3;j++) {
 printf("%d ", disp[i][j]);
 if(j==2){
 printf("\n");
 }
 }
 }
 return 0;
}
Output:

Enter value for disp[0][0]:1
Enter value for disp[0][1]:2
Enter value for disp[0][2]:3
Enter value for disp[1][0]:4
Enter value for disp[1][1]:5
Enter value for disp[1][2]:6
Two Dimensional array elements:
1 2 3
4 5 6

 ..………….. THE END ………………

	Example of For loop
	The Logical Operators
	The break statement in C
	The continue statement in C
	Array Declaration

	Two dimensional (2D) arrays in C programming with example
	Simple Two dimensional(2D) Array Example

