
ID: 11757

NAME :SALMAN KHAN

SUBJECT: PROGRAMMING FUNDAMENTALS

TEACHER: DR FAZAL - E- MALIK

DATE: 29/09/2020

ANS:1 PART(A): IF STATEMENT: When we need to execute a

block of statements only when a given condition is true then we use if statement.

If statement consists a condition, followed by statement or a set of statements as shown
below:

if(condition){ Statement(s); }

The statements gets executed only when the given condition is true. If the condition is
false then the statements inside if statement body are completely ignored.

if (this condition is true)

execute this statement ;

Single-entry/single-exit

Nonzero is true, zero is false

FLOW CHART:

EXAMPLE : if (20 > 18) {

cout << "20 is greater than 18";

}

Run example »

We can also test variables:

Example

int x = 20;

int y = 18;

if (x > y) {

cout << "x is greater than y";

}

NESTED IF ELSE:

It is possible to write an entire if-else with either the if statement block or else
statement block

IF ELSE: if-else
Different actions if conditions true or false

Example

if student’s grade is greater than or equal to 60

Display message “Passed”

else

Display message “Failed”

C++ Code

if (grade >= 60)

cout<<("Passed“);

else
cout<<("Failed“);

PART(B): #include<conio.h>

#include<iostream.h>

class largest

{

int d;

public :

void getdata(void);

void display_large(largest,largest);

};

void largest :: getdata(void)

{

cout<<\"\\n\\nEnter Value :-\";

cin>>d;

}

void largest :: display_large(largest o1,largest o2)

{

if(o1.d > o2.d)

cout<<\"\\nObject 1 contain Largest Value \"<<o1.d;

else if(o2.d > o1.d)

cout<<\"\\nObject 2 contain Largest Value \"<<o2.d;

else

cout<<\"\\nBOTH ARE EQUAL\";

}

void main()

{

largest o1,o2,o3;

clrscr();

o1.getdata();

o2.getdata();

o3.display_large(o1,o2);

getch();

}

ANS 2 PART(A): LOGICAL OPRATER: A logical operator is a symbol or

word used to connect two or more expressions such that the value of the compound
expression produced depends only on that of the original expressions and on the
meaning of the operator.[1] Common logical operators include AND, OR, and NOT.

Discussion

Within most languages, expressions that yield Boolean data type values are divided into
two groups. One group uses the relational operators within their expressions and the
other group uses logical operators within their expressions.

The logical operators are often used to help create a test expression that controls
program flow. This type of expression is also known as a Boolean expression because
they create a Boolean answer or value when evaluated. There are three common logical
operators that give a Boolean value by manipulating other Boolean operand(s). Operator
symbols and/or names vary with different programming languages:

Language AND OR NOT

C++ && || !

C# && || !

Java && || !

JavaScript && || !

Pythonand or not

Swift && || !

The vertical dashes or piping symbol is found on the same key as the backslash \. You
use the SHIFT key to get it. It is just above the Enter key on most keyboards. It may be a
solid vertical line on some keyboards and show as a solid vertical line on some print
fonts.

In most languages there are strict rules for forming proper logical expressions. An
example is:

6 > 4 && 2 <= 14

6 > 4 and 2 <= 14

This expression has two relational operators and one logical operator. Using the
precedence of operator rules the two “relational comparison” operators will be done
before the “logical and” operator. Thus:

true && true

True and True

The final evaluation of the expression is: true.

We can say this in English as: It is true that six is greater than four and that two is less
than or equal to fourteen.

When forming logical expressions programmers often use parentheses (even when not
technically needed) to make the logic of the expression very clear. Consider the above
complex Boolean expression rewritten:

(6 > 4) && (2 <= 14)

(6 > 4) and (2 <= 14)

Most programming languages recognize any non-zero value as true. This makes the
following a valid expression:

6 > 4 && 8

6 > 4 and 8

But remember the order of operations. In English, this is six is greater than four and
eight is not zero. Thus,

true && true

True and True

To compare 6 to both 4 and 8 would instead be written as:

6 > 4 && 6 > 8

6 > 4 and 6 > 8

This would evaluate to false as:

true && false

True and False

Truth Tables

A common way to show logical relationships is in truth tables.

Logical and (&&)

x y x and y

false false false

false true false

true false false

true true true

Logical or (||)

x y x or y

false false false

false true true

true false true

true true true

Logical not (!)

x not x

false true

true false

Examples:

I call this example of why I hate “and” and love “or”.

Every day as I came home from school on Monday through Thursday; I would ask my
mother, “May I go outside and play?” She would answer, “If your room is clean and your
homework is done then you may go outside and play.” I learned to hate the word “and”. I
could manage to get one of the tasks done and have some time to play before dinner,
but both of them… well, I hated “and”.

On Friday my mother took a more relaxed viewpoint and when asked if I could go
outside and play she responded, “If your room is clean or your homework is done then
you may go outside and play.” I learned to clean my room quickly on Friday afternoon.
Well, needless to say, I loved “or”.

For the next example, just imagine a teenager talking to their mother. During the
conversation, mom says, “After all, your Dad is reasonable!” The teenager says,
“Reasonable. (short pause) Not.”

Maybe college professors will think that all their students studied for the exam. Ha ha!
Not. Well, I hope you get the point.

Examples:

25 < 7 || 15 > 36

15 > 36 || 3 < 7

14 > 7 && 5 <= 5

4 > 3 && 17 <= 7

! false

! (13 != 7)

9 != 7 && ! 0

5 > 1 && 7

More examples:

25 < 7 or 15 > 36

15 > 36 or 3 < 7

14 > 7 and 5 <= 5

4 > 3 and 17 <= 7

not False

not (13 != 7)

9 != 7 and not 0

5 > 1 and 7

Key Terms

logical operator

An operator used to create complex Boolean expressions.

truth tables

A common way to show logical relationships.

PART (B):

ANS 3 PART(A): LOOP: A loop is used for executing a block of statements

repeatedly until a particular condition is satisfied. ... In C++ A loop is used for executing a
block of statements repeatedly until a particular condition is satisfied. For example,
when you are displaying number from 1 to 100 you may want set the value of a variable
to 1 and display it 100 times, increasing its value by 1 on each loop iteration.

while Loops (Condition-Controlled Loops):

Both while loops and do-while loops (see below) are condition-controlled, meaning
that they continue to loop until some condition is met.

Both while and do-while loops alternate between performing actions and testing for the
stopping condition.

While loops check for the stopping condition first, and may not execute the body of the
loop at all if the condition is initially false.

Syntax:

while(condition)

body;

where the body can be either a single statement or a block of statements within { curly
braces }.

Example:

int i = 0;

while(i < 5)

printf("i = %d\n", i++);

printf("After loop, i = %d\n", i);

do-while Loops:

do-while loops are exactly like while loops, except that the test is performed at the end
of the loop rather than the beginning.

This guarantees that the loop will be performed at least once, which is useful for
checking user input among other things (see example below.)

Syntax:

do {

body;

} while(condition);

In theory the body can be either a single statement or a block of statements within
{ curly braces }, but in practice the curly braces are almost always used with do-whiles.

Example:

int month;

do {

printf("Please enter the month of your birth > ");

scanf("%d", &month);

} while (month < 1 || month > 12);

Note that the above example could be improved by reporting to the user what the
problem is if month is not in the range 1 to 12, and that it could also be done using a
while loop if month were initialized to a value that ensures entering the loop.

The following diagram shows the difference between while and do-while loops. Note
that once you enter the loop, the operation is identical from that point forward:

for Loops:
for-loops are counter-controlled, meaning that they are normally used whenever the
number of iterations is known in advance.

Syntax:

where again the body can be either a single statement or a block of statements within
{ curly braces }.

Details:

The initialization step occurs one time only, before the loop begins.

The condition is tested at the beginning of each iteration of the loop.

If the condition is true (non-zero), then the body of the loop is executed next.

If the condition is false (zero), then the body is not executed, and execution continues
with the code following the loop.

The incrementation happens AFTER the execution of the body, and only when the body
is executed.

Example:

Special Notes:

The third part of the loop is labeled "incrementation", because it usually takes the form
of "i++" or something similar. However it can be any legal C/C++ statement, such as "N
+= 3" or "counter = base + delta".

In the example above, the variable i is declared before the loop, and continues to exist
after the loop has completed. You will also see occasions where the loop variable is
declared as part of the for loop, (in C99), in which case the variable exists only within
the body of the loop, and is no longer valid when the loop completes:

for(int i = 0; i < 5; i++)

printf("i = %d\n", i);

printf("After loop, i is no longer valid\n");

(In Dev C++ you can specify support for C99 by selecting Project->Project Options from
the menu, and then selecting the Parameters tab. Under "C compiler", add the line:
-std=c99)

The comma operator:
C has a comma operator, that basically combines two statements so that they can be
considered as a single statement.

About the only place this is ever used is in for loops, to either provide multiple
initializations or to allow for multiple incrementations.

For example:
int i, j = 10, sum;

for(i = 0, sum = 0; i < 5; i++, j--)

sum += i * j;

break and continue
break and continue are two C/C++ statements that allow us to further control flow
within and out of loops.

break causes execution to immediately jump out of the current loop, and proceed with
the code following the loop.

continue causes the remainder of the current iteration of the loop to be skipped, and for
execution to recommence with the next iteration.

In the case of for loops, the incrementation step will be executed next, followed by the
condition test to start the next loop iteration.

In the case of while and do-while loops, execution jumps to the next loop condition test.

(We have also seen break used to jump out of switch statements. Continue has no
meaning in switch statements.)

Infinite Loops:
Infinite loops are loops that repeat forever without stopping.

Usually they are caused by some sort of error, such as the following example in which
the wrong variable is incremented:

int i, j;

for(i = 0; i < 5; j++)

printf("i = %d\n", i);

printf("This line will never execute\n");

Other times infinite loops serve a useful purpose, such as this alternate means of
checking user input:

while(true) {

printf("Please enter a month from 1 to 12 > ");

scanf("%d", &month);

if(month > 0 && month < 13)

break;

printf("I'm sorry, but %d is not a valid month.\nPlease try again.\n",
month);

}

Empty Loops:
A common error is to place an extra semi-colon at the end of the while or for statement,
producing an empty loop body between the closing parenthesis and the semi-colon,
such as:

int i;

for(i = 0; i < 5; i++); // Error on this line causes empty loop

printf("i = %d\n", i); // This line is AFTER the loop, not inside it.

or:

int i = 0;

while(i < 5); // Error - empty loop on this line

printf("i = %d\n", i++); // Again, this line is AFTER the loop.

In the case of the while loop shown above, it is not only empty but also infinite.

There are some very rare circumstances in which a programmer will deliberately write
an empty loop, most of which are beyond the scope of this course. (This is know as a
busy loop.)

In this case, the semicolon should be placed on a line by itself, and clearly commented to
indicate that the empty loop is deliberate and not an oversight:

while((error = someFunction()) != 0)

; // Empty loop - Does nothing forever, until someFunction returns a
zero

printf("error = %d\n", error); // After the loop. error must be zero to get
here.

Nested Loops:
The code inside a loop can be any valid C code, including other loops.

Any kind of loop can be nested inside of any other kind of loop.

for loops are frequently nested inside of other for loops, for example to produce a
simple multiplication table:

const int NROWS = 10;

const int NCOLS = 10;

for(int r = 0; r < NROWS; r++) { // Loop through rows

for(int c = 0; c < NCOLS; c++) { // Loop through columns

printf("%5d", r * c); // No newline in the middle of a row

} // End of loop through columns

printf("\n"); // One newline at the end of each row

} // End of loop through rows

Some programmers like to use successive integers i, j, k, l, etc. for use in nested for loops.
This can be appropriate if the mathematics being implemented uses multiple ijk
subscripts.

Other times it can be less confusing to use alternative variables that are more
meaningful to the problem at hand, such as the r and c variables used above to keep
track of rows and columns.

The limits as to how deeply loops may be nested is implementation dependent, but is
usually too high to be of any concern, except in cases of extremely complex or extremely
poorly written programs.

Floating Point Increments Within Loops:
Engineers and scientists frequently write iterative programs in which a floating point
value steps through a range of values in small increments.

For example, suppose the "time" variable needs to change from a low of tMin to a high
of tMax in steps of deltaT, where all these variables are doubles.

The obvious BUT INCORRECT approach is as follows:

for(time = tMin; time <= tMax; time += deltaT) {

// Use the time variable in the loop

So why is this so wrong?

If deltaT is small and/or the range is large (or both), the loop may execute for
thousands of iterations.

That means that by the end of the loop, time has been calculated by the summation of
thousands of addition operations.

Numbers that seem "exact" to us in decimal form, such as 0.01 are not exact when the
computer stores them in binary, which means that the value used for deltaT is really an
approximation to the exact value.

Therefore each addition step introduces a very small amount of roundoff error, and by
the time you add up thousands of these errors, the total error can be significant.

The correct approach is as follows, if you know the minimum and maximum values and
the desired change on each iteration:

int nTimes = (tMax - tMin) / deltaT + 1;

for(int i = 0; i < nTimes; i++) {

time = tMin + i * deltaT;

// NOW use a more accurate time variable

Or alternatively if you know the minimum, maximum, and number of desired iterations:

double deltaT = (tMax - tMin) / (nTimes - 1);

for(int i = 0; i < nTimes; i++) {

time = tMin + i * deltaT;

// NOW use a more accurate time variable

In general there are four values that can be used to specify stepping through a range -
the low end of the range, the high end of the range, the number of step to take, and the
increment to take on each step - and if you know any three of them, then you can
calculate the fourth one.

The correct loop should use an integer counter to complete the loop a given number of
times, and use the low end of the range and the increment as shown to calculate the
floating point loop variable at the beginning of each iteration of the loop.

So why is that better?

The number of times that the loop executes is now controlled by an integer, which does
not have any roundoff error upon incrementation, so there is no chance of performing
one too many or one too few iterations due to accumulated roundoff.

The time variable is now calculated from a single multiplication and a single addition,
which can still introduce some roundoff error, but far less than thousands of additions.

Where does that +1 come from?

The +1 is needed in order to include both endpoints of the range.

Suppose tMax were 20 and tMin were 10, and deltaT were 2.

The desired times would be 10, 12, 14, 16, 18, 20, which is a total of 6 time values, not 5.
(Five intervals if you want to look at it that way.)

(20 - 10) / 2 yields 5, so you have to add the extra 1 to get the correct number of times
of 6.

Another way of looking at this is that if nTimes is the number of data points in the range,
then nTimes - 1 is the number of gaps between the data points.

Example: interpolate.c is a quick-and-dirty example of interpolating floating point
numbers in a loop, that was whipped up in 10 minutes in class. It is NOT an example of
good code, but it is an example of how a quick little program can be used to test out,
play with, or in this case demonstrate a new or unfamiliar concept. This example

interpolates the function f(x) = x^3 over the range from -1.0 to 4.0 in steps of 0.5, using
three approachs:

Constant - Take the average of the inputs at the end points, evaluate f(average input),
and assume the function is constant over the range.

Linear - Evaluate the function at the endpoints, and then use a linear interpolation of the
endpoint function values in between.

Non-Linear - Linearly interpolate the function inputs over the range, and at each
evaulation point, evaluate the function of the interpolated inputs.

When to Use Which Loop ?

If you know (or can calculate) how many iterations you need, then use a
counter-controlled (for) loop.

Otherwise, if it is important that the loop complete at least once before checking for the
stopping condition,

or if it is not possible or meaningful to check the stopping condition before the loop has
executed at least once,

then use a do-while loop.

Otherwise use a while loop.

PART(B):

ANS 4 PART(A): Break and Continue Statements:
The one-token statements continue and break may be used within loops to alter control
flow; continue causes the next iteration of the loop to run immediately, whereas break
terminates the loop and causes execution to resume after the loop. Both control
structures must appear in loops. Both break and continue scope to the most deeply
nested loop, but pass through non-loop statements.

Although these control statements may seem undesirable because of their goto-like
behavior, their judicious use can greatly improve readability by reducing the level of
nesting or eliminating bookkeeping inside loops.

Break Statements:
When a break statement is executed, the most deeply nested loop currently being
executed is ended and execution picks up with the next statement after the loop. For
example, consider the following program:

while (1) {

if (n < 0) break;

foo(n);

n = n - 1;

}

The while~(1) loop is a “forever” loop, because 1 is the true value, so the test always
succeeds. Within the loop, if the value of n is less than 0, the loop terminates, otherwise
it executes foo(n) and then decrements n. The statement above does exactly the same
thing as

while (n >= 0) {

foo(n);

n = n - 1;

}

This case is simply illustrative of the behavior; it is not a case where a break simplifies
the loop.

Continue Statements:
The continue statement ends the current operation of the loop and returns to the
condition at the top of the loop. Such loops are typically used to exclude some values
from calculations. For example, we could use the following loop to sum the positive
values in the array x,

real sum;

sum = 0;

for (n in 1:size(x)) {

if (x[n] <= 0) continue;

sum += x[n];

}

When the continue statement is executed, control jumps back to the conditional part of
the loop. With while and for loops, this causes control to return to the conditional of the
loop. With for loops, this advances the loop variable, so the the above program will not

go into an infinite loop when faced with an x[n] less than zero. Thus the above program
could be rewritten with deeper nesting by reversing the conditional,

real sum;

sum = 0;

for (n in 1:size(x)) {

if (x[n] > 0)

sum += x[n];

}

While the latter form may seem more readable in this simple case, the former has the
main line of execution nested one level less deep. Instead, the conditional at the top
finds cases to exclude and doesn’t require the same level of nesting for code that’s not
excluded. When there are several such exclusion conditions, the break or continue
versions tend to be much easier to read.

PART(B): #include<iostream.h>

#include<conio.h>

void main()

{

clrscr();

int i,n,sum=0;

cout<<“1+2+3+……+n”;

cout<<“nEnter the value of n:”;

cin>>n;

for(i=1;i<=n;++i)

sum+=i;

cout<<“nSum=”<<sum;

getch();

}

ANS 5 PART(A): C++ CHARECTER SET: Character set is the combination
of English language (Alphabets and White spaces) and math’s symbols (Digits and Special
symbols). Character Set means that the characters and symbols that a C++ Program can
understand and accept. These are grouped to form the commands, expressions, words,
c-statements and other tokens for C++ Language.

Character Set is the combination of alphabets or characters, digits, special symbols and
white spaces same as learning English is to first learns the alphabets, then learn to
combine these alphabets to form words, which in turn are combined to form sentences
and sentences are combined to form paragraphs. More about a C++ program we can say
that it is a sequence of characters. These character from the character set plays the
different role in different way in the C++ compiler. The special characters are listed in
Table

n addition to these characters, C++ also uses a combination of characters to represent
special conditions. For example. character combinations such as ‘\nt, ‘\b’ and ‘\t’ are
used to represent newline, backspace and horizontal tab respectively.

When we have to learn English language we start from beginning as given below

When we have to learn C language we start from beginning as given below:

There are mainly four categories of the character set as shown in the Figure

1. Alphabets:
Alphabets are represented by A-Z or a-z. C- Language is case sensitive so it takes
different meaning for small and upper case letters. By using this character set C
statements and character constants can be written very easily. There are total 26 letters
used in C-programming.

2. Digits:
Digits are represented by 0-9 or by combination of these digits. By using the digits
numeric constant can be written easily. Also numeric data can be assigned to the
C-tokens. There are total 10 digits used in the C-programming.

3. Special Symbols:
All the keyboard keys except alphabet, digits and white spaces are the special symbols.
These are some punctuation marks and some special symbols used for special purpose.

There are total 30 special symbols used in the C-programming. Special symbols are used
for C-statements like to create an arithmetic statement +, -, * etc. , to create relational
statement <, >, <=, >=, == etc. , to create assignment statement =, to create logical
statement &&, II etc. are required.

4. White Spaces:
White spaces has blank space, new line return, Horizontal tab space, carriage ctrl, Form
feed etc. are all used for special purpose. Also note that Turbo-C Compiler always ignore
these white space characters in both high level and low level programming

PART(B): Constants in C/C++

As the name suggests the name constants is given to such variables or values in C/C++
programming language which cannot be modified once they are defined. They are fixed
values in a program. There can be any types of constants like integer, float, octal,
hexadecimal, character constants etc. Every constant has some range. The integers that
are too big to fit into an int will be taken as long. Now there are various ranges that
differ from unsigned to signed bits. Under the signed bit, the range of an int varies from
-128 to +127 and under the unsigned bit, int varies from 0 to 255.

In C/C++ program we can define constants in two ways as shown below:

Using #define preprocessor directive

Using a const keyword

Literals: The values assigned to each constant variables are referred to as the literals.

Generally, both terms, constants and literals are used interchangeably. For eg, “const int
= 5;“, is a constant expression and the value 5 is refered to as constant integer literal.

Refer here for various Types of Literals in C++.

Using #define preprocessor directive: This directive is used to declare

an alias name for existing variable or any value. We can use this to declare a constant as
shown below:

#define identifierName value

identifierName: It is the name given to constant.

value: This refers to any value assigned to identifierName.

EXAMPLE:

#include<stdio.h>

#define val 10

#define floatVal 4.5

#define charVal 'G'

int main()

{

printf("Integer Constant: %d\n",val);

printf("Floating point Constant: %.1f\n",floatVal);

printf("Character Constant: %c\n",charVal);

return 0;

}

Output:

Integer Constant: 10

Floating point Constant: 4.5

Character Constant: G

using a const keyword: Using const keyword to define constants is as simple

as defining variables, the difference is you will have to precede the definition with a
const keyword.

PART(C): VARIABLE: A variable is a name given to a memory location. It is the

basic unit of storage in a program.

The value stored in a variable can be changed during program execution.

A variable is only a name given to a memory location, all the operations done on the
variable effects that memory location.

In C++, all the variables must be declared before use.

How to declare variables?

A typical variable declaration is of the form:

// Declaring a single variable

type variable_name;

// Declaring multiple variables:

type variable1_name, variable2_name, variable3_name;

A variable name can consist of alphabets (both upper and lower case), numbers and the
underscore ‘_’ character. However, the name must not start with a number.

In the above diagram,

datatype: Type of data that can be stored in this variable.

variable_name: Name given to the variable.

value: It is the initial value stored in the variable.

Examples:
// Declaring float variable

float simpleInterest;

// Declaring integer variable

int time, speed;

// Declaring character variable

char var;

Difference between variable declaration and definition

The variable declaration refers to the part where a variable is first declared or introduced
before its first use. A variable definition is a part where the variable is assigned a
memory location and a value. Most of the times, variable declaration and definition are
done together.

See the following C++ program for better clarification:

#include <iostream>

using namespace std;

int main()

{

// declaration and definition

// of variable 'a123'

char a123 = 'a';

// This is also both declaration and definition

// as 'b' is allocated memory and

// assigned some garbage value.

float b;

// multiple declarations and definitions

int _c, _d45, e;

// Let us print a variable

cout << a123 << endl;

return 0;

}

Output:

a

Let us now learn about each one of these variables in detail.

Local Variables: A variable defined within a block or method or constructor is
called local variable.

These variable are created when the block in entered or the function is called and
destroyed after exiting from the block or when the call returns from the function.

The scope of these variables exists only within the block in which the variable is declared.
i.e. we can access these variable only within that block.

Initilisation of Local Variable is Mandatory.

Instance Variables: Instance variables are non-static variables and are declared
in a class outside any method, constructor or block.

As instance variables are declared in a class, these variables are created when an object
of the class is created and destroyed when the object is destroyed.

Unlike local variables, we may use access specifiers for instance variables. If we do not
specify any access specifier then the default access specifier will be used.

Initilisation of Instance Variable is not Mandatory.

Instance Variable can be accessed only by creating objects.

Static Variables: Static variables are also known as Class variables.

These variables are declared similarly as instance variables, the difference is that static
variables are declared using the static keyword within a class outside any method
constructor or block.

Unlike instance variables, we can only have one copy of a static variable per class
irrespective of how many objects we create.

Static variables are created at the start of program execution and destroyed
automatically when execution ends.

Initialization of Static Variable is not Mandatory. Its default value is 0

If we access the static variable like Instance variable (through an object), the compiler
will show the warning message and it won’t halt the program. The compiler will replace
the object name to class name automatically.

If we access the static variable without the class name, Compiler will automatically
append the class name.

To access static variables, we need not create an object of that class, we can simply
access the variable as

class_name::variable_name;

Instance variable Vs Static variable

Each object will have its own copy of instance variable whereas We can only have one
copy of a static variable per class irrespective of how many objects we create.

Changes made in an instance variable using one object will not be reflected in other
objects as each object has its own copy of instance variable. In case of static, changes
will be reflected in other objects as static variables are common to all object of a class.

We can access instance variables through object references and Static Variables can be
accessed directly using class name.

Syntax for static and instance variables:

class Example

{

static int a; // static variable

int b; // instance variable

}

PART(D): KEYWORDS: is a predefined or reserved word in C++ library with
a fixed meaning and used to perform an internal operation. C++ Language supports
more than 64 keywords.

Keywords are those words whose meaning is already defined by Compiler. These
keywords cannot be used as an identifier. Note that keywords are the collection of
reserved words and predefined identifiers. Predefined identifiers are identifiers that are
defined by the compiler but can be changed in meaning by the user.

Every Keyword exists in lower case latter like auto, break, case, const, continue, int etc.

32 Keywords in C++ Language which is also available in C language.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Another 30 reserved words that were not in C, these are new to C++

asm dynamic_cast namespace reinterpret_cast

bool explicitnew static_cast

catch false operator template

class friend private this

const_cast inline public throw

delete mutable protected true

try typeid typename using

using virtual wchar_t

PART(E): RELATIONAL OPRATERS: In C++ Programming, the values stored
in two variables can be compared using following operators and relation between them
can be determined.

Various C++ relational operators available are-

Operator, Meaning

> ,Greater than

>= , Greater than or equal to

== , Is equal to

!= , Is not equal to

< , Less than or equal to <= , Less than [/table]

As we discussed earlier, C++ Relational Operators are used to compare values of two
variables. Here in example we used the operators in if statement.

Now if the result after comparison of two variables is True, then if statement returns
value 1.

And if the result after comparison of two variables is False, then if statement returns
value 0.

EXAMPLE:
#include<iostream>

using namespace std;

int main()

{

int a=10,b=20,c=10;

if(a>b)

cout<<"a is greater"<<endl;

if(a<b)

cout<<"a is smaller"<<endl;

if(a<=c)

cout<<"a is less than/equal to c"<<endl;

if(a>=c)

cout<<"a is less than/equal to c"<<endl;

return 0;

}

Output:
a is smaller

a is less than/equal to c

a is greater than/equal to c

