

2020

VISUAL PROGRAMMING

FINAL PAPER

Name: Muhammad Abdullah Minhas

I.D : 13864

Teacher: Sir Ayub

Date: 23rd Sep 2020

Question no 1

Q1. a. What is decision making in C # explain with the help of

flow charts?

Ans) Decision making structures requires the programmer to

specify one or more conditions to be evaluated or tested by the

program.

There are three types of decision making statements;

1) if statement

2) if else statement

3) if else if statement

if Statement :

If the expression evaluates to true, then the block of code inside

the if statement is executed. If expression evaluates to false, then

the first set of code after the end of the if statement(after the

closing curly brace) is executed.

if else statement:

If the expression evaluates to true, then the if block of

code is executed, otherwise else block of code is

executed.

Syntax

if(boolean_expression) {

 /* statement(s) will execute if the boolean expression is true */

} else {

 /* statement(s) will execute if the boolean expression is false

*/

}

if else if statement:

When using if, else if, else statements there are few points to

keep in mind.

•An if can have zero or one else's and it must come after any else

if's.

•An if can have zero to many else if's and they must come before

the else.

•Once an else if succeeds, none of the remaining else if's or else's

will be tested.

Syntax

if(boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

}

else if(boolean_expression 3) {

 /* Executes when the boolean expression 3 is true */

} else {

 /* executes when the none of the above condition is true */

}

b. Write a program in C # in which different genders are to be separated

 based on user input?

Ans) code

using System;

class Program

{

 static void Main(string[] args)

 {

 char gender;

 //Reading gender from user
 Console.WriteLine("Enter gender (M/m or F/f): ");

 gender = Convert.ToChar(Console.ReadLine());

 // checking vowel and consonant
 switch (gender)
 {

 case 'M':
 case 'm': Console.WriteLine("MALE");

 break;

 case 'F':

 case 'f': Console.WriteLine("FEMALE");
 break;

 default: Console.WriteLine("Unspecified Gender");
 break;
 }

 Console.ReadLine();

 }

Question no 2

Q2. a. What is the role of “If else if” in decision making
explain with the help of flow chart ?
Ans) The C# if statements are executed from the top
down. As soon as one of the conditions controlling the if
is true, the statement associated with that if is executed,
and the rest of the C# else-if ladder is bypassed. If none
of the conditions are true, then the final else statement
will be executed.

 b. Write a program in C # in which different weather
conditions are mentioned?
Ans) using System;
public class Exercise13
{
 public static void Main()
{
 int tmp;
 Console.Write("\n\n");
 Console.Write("Accept a temperature in centigrade and display a
suitable message:\n");
 Console.Write("--
------------");
 Console.Write("\n\n");

 Console.Write("Input temperature : ");
 tmp= Convert.ToInt32(Console.ReadLine());
 if(tmp<0)
 Console.Write("Freezing weather.\n");
 else if(tmp<10)
 Console.Write("Very cold weather.\n");
 else if(tmp<20)
 Console.Write("Cold weather.\n");
 else if(tmp<30)
 Console.Write("Normal in temp.\n");
 else if(tmp<40)
 Console.Write("Its Hot.\n");
 else
 Console.Write("Its very hot.\n");
}
}

Input is 48

Question no 3

Q3. a. What is the role of Loops in C# explain with the

help of a flow chart?

Ans) In programming, it is often desired to execute certain

block of statements for a specified number of times. A

possible solution will be to type those statements for the

required number of times

How for loop works?

1. C# for loop has three

statements: initialization, condition and iterator.

2. The initialization statement is executed at first and

only once. Here, the variable is usually declared and

initialized.

3. Then, the condition is evaluated. The condition is a

boolean expression, i.e. it returns either true or false.

4. If the condition is evaluated to true:

a. The statements inside the for loop are executed.

b. Then, the iterator statement is executed which

usually changes the value of the initialized

variable.

c. Again the condition is evaluated.

d. The process continues until the condition is

evaluated to false.

5. If the condition is evaluated to false, the for loop

terminates.

b. How many loops are supported by C #, give separate example for

each
 loop?
Ans) There are three types of loops supported by C#

 While Loop

 Do-While loop

 For loop

https://www.guru99.com/c-loop-statement.html#3
https://www.guru99.com/c-loop-statement.html#4
https://www.guru99.com/c-loop-statement.html#5

While Loop:

A while loop is the most straightforward looping

structure. The basic format of while loop is as follows:

Syntax

while (condition) {

 statements;

}

CODE

#include<stdio.h>

#include<conio.h>

int main()

{

 int num=1; //initializing the variable

 while(num<=10) //while loop with condition

 {

 printf("%d\n",num);

 num++; //incrementing operation

 }

 return 0;

}

Do-While loop

A do-while loop is similar to the while loop except that

the condition is always executed after the body of a

loop. It is also called an exit-controlled loop.

The basic format of while loop is as follows:

Syntax

 do {

 statements

} while (expression);

CODE:

#include<stdio.h>

#include<conio.h>

int main()

{

 int num=1; //initializing the variable

 do //do-while loop

 {

 printf("%d\n",2*num);

 num++; //incrementing operation

 }while(num<=10);

 return 0;

}

For loop

A for loop is a more efficient loop structure in 'C'

programming. The general structure of for loop is as

follows:

Syntax

for (initial value; condition; incrementation or

decrementation)

{

 statements;

}

Statements

 The initial value of the for loop is performed only

once.

 The condition is a Boolean expression that tests and

compares the counter to a fixed value after each

iteration, stopping the for loop when false is returned.

 The incrementation/decrementation increases (or

decreases) the counter by a set value.

CODE

#include<stdio.h>

int main()

{

 int number;

 for(number=1;number<=10;number++) //for

loop to print 1-10 numbers

 {

 printf("%d\n",number); //to print the

number

 }

 return 0;

}

Question no 4

Q4. Why do the developers prefer for loops instead other

loops justify your answer with the help of an C # coded

program ?

Ans) The basic difference between for loop and other

loops is “The one notable difference between a for() and

while() loop is that a "continue" statement in a while()

loop will branch to the top of the loop, while one in a for()

loop will branch to the third part of the for() clause [the

one after the condition, usually used to bump variables.

Explanation

 for-loops are for counting. counting up, counting

down.

 while / do-while constructs are for all other

conditions. c!=EOF, diff<0.02, etc.

Iterators/Enumerators are counters very suitable for

for-loops
 “Between a WHILE and FOR loop, you can use them interchangeably. To be a purist, you

could make your decision base on the nature of the conditions. If you're performing a

count-based loop, then a FOR loop would make the most sense.”

For loop

for(cur = 0; cur < myList.Length; cur++){

 doSomething(myList[cur]);
}

If you're performing a logic-based loop, then a WHILE would make for the cleanest

implementation

While loop

Iterator i = myObject.getIterator();
while(i.hasNext()){
 doSomething(i.next());
}

Question no 5

Q5. a. What is encapsulation and its role in object oriented

programming?
Ans) Encapsulation:

 It is one of the fundamentals of OOP (object-

oriented programming). It refers to the bundling of data with the

methods that operate on that data. Encapsulation is used to hide

the values or state of a structured data object inside a class,

preventing unauthorized parties’ direct access to them. Publicly

accessible methods are generally provided in the class (so-called

getters and setters) to access the values, and other client classes

call these methods to retrieve and modify the values within the

object.

ROLE OD ENCAPSULATION

Encapsulation is a good idea for several reasons:

 the functionality is defined in one place and not in multiple
places.

 it is defined in a logical place – the place where the data is kept.
 data inside our object is not modified unexpectedly by external

code in a completely different part of our program.
 when we use a method, we only need to know what result the

method will produce – we don’t need to know details about the
object’s internals in order to use it. We could switch to using
another object which is completely different on the inside, and
not have to change any code because both objects have the
same interface.

b. Why access specifiers are used in encapsulation justify

your answer with the help C # coded example?

Ans) An access specifier defines the scope and visibility of

a class member. C# supports the following access

specifiers:

1.Public

2.Private

3.Protected

4.Internal

5.Protected internal

Public Access Specifier

Public access specifier allows a class to expose its member

variables and member functions to other functions and

objects. Any public member can be accessed from outside

the class.

Private Access Specifier

Private access specifier allows a class to hide its member

variables and member functions from other functions and

objects. Only functions of the same class can access its

private members. Even an instance of a class cannot

access its private members.

Protected Access Specifier

Protected access specifier allows a child class to access

the member variables and member functions of its base

class. This way it helps in implementing inheritance.

Internal Access Specifier

Internal access specifier allows a class to expose its

member variables and member functions to other

functions and objects in the current assembly.

Protected Internal Access Specifier

The protected internal access specifier allows a class to

hide its member variables and member functions from

other class objects and functions, except a child class

within the same application. This is also used while

implementing inheritance.

Public

Private

