Muhammad Idrees Khan

ID: 6659

Iqra National University, Peshawar
Department of Computer Science
Spring Semester 2020
Online Final - Term Examination
Course Code: 102002090
Course Title: Data Communication and Networks
Instructor: Engr. Ghassan Husnain
Program: BS Computer Science
Note: Attempt all Questions

Q1) Sec a) Assume that a voice channel occupies a bandwidth of 4 kHz . We need to multiplex 10 voice channels with guard bands of 500 Hz using FDM. Calculate the required bandwidth.

Q1) Sec b) An analog signal carries 4 bits per signal element. If 3000 signal elements are sent per second, find the bit rate.

Q1) Sec c) Distinguish between a signal element and a data element.

Ques 1: $\sec 2$. Distinguish between a signal element and data element.
Anger The main goal of communication is T send data element or data. A data element is the smallest entity that can represent a Piece of information. This is the bit. Beacause a bit is the smallest element of digital data. In disital communication a "signal element" carries data dement. ie, the bits. if we measure in time, a signal element is the shortest unit of a digital signal. In other woods data element are what we need To send. i.c, the data; signal element are what we can send, i,e, The signals Data element are being carried, signal dement are the carriers.

1 data element

Q1) Sec d) Distinguish between a link and a channel in multiplexing.

QNo1: Sec De. Distinguish between a dink and a channd in multiplexing.
Ans. multiplexing is the set of Techniques That allows The simultanous Transmission of multiple signal across a signal data dink e if the link allows and band width available, so, from the above definith "Link refers to the physical Path of.
Transmission while channel refers to the Portion of a link That carries a Transmission between a given Dais of dine. one physical link can have many (n) channel.
misc can be ievositrated from ne fula

Q1) Sec e) List three different techniques in serial transmission and explain the differences.

Qnol.seces. Unit Wire different Techniques in serial Transmission and explain the differences Anse. the transmission of binary data acerose a link can be accomplished in either Parallel or serial mode, In Paralld mode, multiples bids are sent with each clock rick, In serial mode, 1 bit is sent with each clock Tick. There are Three techniques of serial Transmission Astenchronous, synchronous, and Isochronous. while There abe very obvious differences between Asynchroppus and synchronous communication, the Isochronous is used for a different TyP ${ }^{2}$ e of communication as given below, Synchronous Asynchronous
(1) A data Transfer method near (1) A data Transfer method mat sends a continuous stream of clata Sends data from $780 n \mathrm{~m}$ miter To the receiver using regular riming To recivel with Parity bits signals That ensures beth Transmitter (start and stop bits) in uneven and receiver ar eynchronized intervals. with each other.
(2) sender and reciver operate (2) sender and reduer operate on The same clock frequencies
(3) Faster
(4) There are no gaps b/w data-doda flows as a condinous stream
(5) Uses constant Time intervals (5) uses condom of Ilogegula Time (b) Used in chat rooms and video conferencing

sochronous Transmission:

- In real time audio and video, in whileh uneven delays between frame are not Acceptable. They must be viewed at The some rate. - A mixed type of communication defined at the data clinic layer used to support real -Time applications.
- Data most be delivered at Just the right speed, (real time) - not Too fast and nod Too slow. Typically an isochronous connection must allocate recourees on both ends To maintain real time, USB and firewire can both support isochronous.

Q2) Sec a) Find the 8-bit data stream for the following case:

b. differential Manchester

Qnoz(a): find the 8 bit data stream for The fall

 Ans: After analysis of the encoding I have found this to be a differential manchester. In DM O-change at the staid of the interval and 1 -no change at start the Data Stream

Bit stream is: 11000100
Q2) Sec b) Draw the graphs of the Manchester, differential Manchester, NRZ-I and NRZ-L schemes for each of the following data streams: (4 marks)
a. 11001100

Differential Manchester

b. 01010101

$$
\begin{aligned}
& 0100101001 \\
& \text { Differential manchester } \\
& \text { D- Transion at The start } \\
& \text { 1-No Transion at The start. }
\end{aligned}
$$

Q2) Sec c) What is the Nyquist sampling rate for the band-pass signal with bandwidth of 950 KHz if the lowest frequency is 450 KHz ?

Q3) Sec a) We have an available bandwidth of 300 kHz which spans from 500 to 800 kHz . What are the carrier frequency and the bit rate if we modulated our data by using ASK with $d=1$?

Quo: we have an avaidable bandwidth of 300 khz which SPans from S00 To 800 lzh Solution: The middle of the bandwidth is 5 located at 650 khz . This means that our carrier frequency can be at $f_{c}=$ bison we can use the formula for bandwidth $t 0$ find the but rate with $d=1$ Here γ is the bits per signal element, so we suppose $\gamma=1$. Beause we cannot find the value of γ as we cont have N. carrier frequency $\rightarrow f_{c}=650 \mathrm{khz}$
And the formula for bit rate is

$$
B=(1+d) \times s
$$

The value are $B=300 \mathrm{khz}$

$$
d=1
$$

$\gamma=1$ So we Place the value in the above formula.

$$
\begin{aligned}
& \begin{array}{l}
B=(1+d) \times s \\
(1+1) \times N \times 1 / 2 \times N \times \frac{1}{1} \rightarrow \\
B=2 \times N \rightarrow 300 \mathrm{chz} \rightarrow N=\frac{300}{2}= \\
150 \mathrm{kbps}=N \\
N=150 \text { lebps }
\end{array}
\end{aligned}
$$

Q3) Sec b) Which shift keying technique is used in the following diagram? Briefly explain:

Ono
Ans: is we see at the given figure In The question, we can see that The Amplitude for one signal element is different and the other is different. i.e, The Peak Amplitude of one sisnal level is 0 , The o The is not 0 , maybe The same as the Amplitude of the carrier freqpancy, But both frequency and phase remain constant while only The Amplitude changes. further more There are only two levels-
similarly in Amplitude shift keying (ASK) The Amplitude of the carrier signal is varied $\overline{T O}$ cleat signal element. Both frequency and Phase remain constant while π Ac Amplitude changes. ASK is normally implemented using only two levels. This is reserved to as binary amplitude shift keying or on-off Keying Look)
so it is lear The given diagram depicts amplitude shift keying (Ask)

Q4) Sec a) Briefly explain the FDM Multiplexing and De-Multiplexing Process with the help of diagram and also differentiate between TDM and FDM?
(a)

Anu: Briefly explain The FDM multiplexing....? Ansi. FOM is an onorbog technique that con be applied when nc bandwidth of a link is greater then the combined bandwidth of The signals $\overline{T o}$ be Transmitted. In FDM. Signals genareted by each sending device modulate different carrier frequencls. These modulated sisnals are then combined into a single composite signal that can be Transported by The link. channels can be separated by strips of unposed bandwith - guard bands To Prevent signals from overelapping.
FDM multiplexing Process:
on the sender side, while multiplexing, each Source generated a signal of a similler frequancy range. inside the multiplexer, These similar signal modulate, different frequencies (f_{1}, f_{2} and f_{3}). The resulting modulated signals are then combined into a pisnal composite signal mat is sent out over a media link that has enough bandwidth \bar{T} accommodate if.
The bellow illustration is showing the FDM multiplexing process.

FDM Demultiplexing process: on The reciver side, demultiplexer is used to de multiplex the signal. The de multiplexer uses a series of filters to decompose the multiplexed signal into its constituent component Signals. The individual signals are then passed To a demodulator that separates them from Their carries and passes $\overline{T r}$ an $T 0$ The output dine. Tic below idlositration is showing the fin Demutiplitions

Difference between $\mathrm{DIM}_{\mathrm{M}}$ and CDM
 Time is diulded into scuerdal users
\rightarrow Transmission of no or more signal on The same Path but at different incs
\rightarrow use in digital systems \rightarrow over a common Path. synchronazation is requited $\left\{\begin{array}{l}\rightarrow \text { are in analog system a } \\ \text { syndronization is not requital }\end{array}\right.$

Q4) Sec b) Briefly explain Analog to Analog conversion techniques with the help of diagrams?
$\mathrm{Scc}(\mathrm{b})$
Qandely. Briefly Explain Analog To Analog conversion-
Ans: Analog $\overline{\text { IT }}$ Analog conversion, or Analog modulation is the representation of Analog information by an analog signal it is usually needed when the medium is bandpass in nature of if only a bandpaes channel is available to US. An example is radio transmission.
Analog $\frac{10}{c o}$ Analog conversion can be accomplished in three ways. Amplitude modulation (AM) frequancy modulation ($F M$) and Phase modulation (PM Amplitude modulation:-
in AM Transmission, The carrier signal is modulate r So That the Amplitude varies with the changing amplitude of the modulating signal.
The frequanoy and Phase of the carrier Kemain the same, only the Amplitude changes To follow variation in The informants The modulating signal is the envelope of the carrier.
Am is normally implemented by useng a simple multiplied because the Amplitude of the carried signal needs To be changed according to the Amplitude of the modulating signal.

Frequaney modulation :-
In fM Transmission, The frequency of The carried signal is modulated to follow the Changing voltage lever of the modulation signal. The peak amplitude and phase of The carrier signal remain constant, but as the amplitude of the information signal chance, The frequency of the carrier changes correspondingly.
FM is normally Implemented by using a voltage-controdled oscillator as with FSK. The frequancy of the oscillator changes. according To the input voltage which is The Amplitude of the modulation signal.
modulating signal

Total Banduithth required for fm
for the Audio sisnal

$$
B_{F m}=2(1 \times \beta) B
$$

Phase modulation so
In PM Transmission. The Phase of the carrier signal is modulated To follow The channging voltage level of the modulating signal.

The Pear Amplitude and frequancy of The carrie signal remain constant but os the amplitude of the information signal changes, the phase of the carried changes correspondingly.
figure show The relationships of the modulation signal, The carrier signal and The resultant Pm signal..

$$
B P m=2(1+b) B
$$

Total Required Bandwidth for fM?

$$
B f n=2(1 \times \beta) B
$$

