

Name :> Qazi Azmat Ullah ID NO :> 14448

Department :> Computer Science
Program :> Software Engineering
Semester :> 2nd
Section:> A
Subject :> Discrete Structure

Question Number 1

Which of the following are propositions ?

(a) Not a Propositons.it is a command or imperative
(b) and
(c) are both Proposition
(d) Not a Proposition. It is a question.
(e) Strickly speaking is a proposition function. But may people would say it is a proposition.
(f) Not a proposition ; because the result can be either true or false.

Question Number 2

P is " x " <50 "; q is " $x>40$ ".
Write as simply as you can.
(a) $x \geq 50$.
(b) $\mathrm{X} \leq 40$.
(c) $40<X<50$
(d) $X<50$ or $X>40$ this true for all value of X
(e) $x \geq 50$
(f) $X \geq 50$ and $X \leq 40$ this can never be true whatever the value of X

Question Number 3

(A)
(a) Everybody dislike maths.
(B)
(a) Neither 2 nor 3 is the answer.
(c) the answer is not 2 and it is not 3 .
(C)
(c) someone in my class is short or fat.

Question Number 4

Construct truth table for;
(A) $\sim p v \sim q$

p	q	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} v{ }^{\sim} \mathrm{q}$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

(B) $q^{\wedge}(\sim p \vee q)$

p	q	$\sim p$	$\sim p \vee q$	$q^{\wedge(\sim p v q)}$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	F

(c) $p^{\wedge}(q \vee r)$

p	q	r	$\mathrm{q} v \mathrm{r}$	$\mathrm{p}^{\wedge}(\mathrm{qvr})$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	F

(D) $\left(p^{\wedge} q\right) v r$

p	q	r	$\left(p^{\wedge} q\right)$	$\left(p^{\wedge} q\right) v r$
T	T	T	T	T
T	T	F	T	T
T	F	T	F	T
T	F	F	F	F
F	T	T	F	T
F	T	F	F	F
F	F	T	F	T
F	F	F	F	F

Question Number 5

$$
\sim\left((P \vee \sim q) \vee\left(r^{\wedge}(p v \sim q)\right)\right) \equiv \sim p^{\wedge} q
$$

p	q	r	$\sim \mathrm{p}$	$\sim \mathrm{q}$	(pv \sim)	$\mathrm{r}^{\wedge}(\mathrm{pv} \sim \mathrm{q})$	$(\mathrm{pv} \sim \mathrm{q}) \mathrm{v} \mathrm{r}^{\wedge}(\mathrm{pv} \sim \mathrm{q})$	$\sim\left((p v \sim q) v\left(r^{\wedge}(p v \sim q)\right)\right)$
T	T	T	F	F	T	T	T	F
T	T	F	F	F	T	F	T	F
T	F	T	F	T	T	T	T	F
T	F	F	F	T	T	F	T	F
F	T	T	T	F	F	F	F	T
F	T	F	T	F	F	F	F	T
F	F	T	T	T	T	T	T	F
F	F	F	T	T	T	F	T	F

p	q	$\sim \mathrm{p}$	$\sim \mathrm{p}^{\wedge} \mathrm{q}$
T	T	F	F
T	T	F	F
T	F	F	F
T	F	F	F
F	T	T	T
F	T	T	T
F	F	T	F
F	F	T	F

NOTE:> Hence the L.H.S = R.H.S because the last column of both side are same

Question Number 6

Use the Laws of logical propositions to prove that.
$\left(z^{\wedge} \mathrm{w}\right) \mathrm{v}\left(\sim \mathrm{z}^{\wedge} \mathrm{w}\right) \mathrm{v}\left(\mathrm{z}^{\wedge} \sim \mathrm{w}\right) \equiv \mathrm{zvw}$
$=\left(\mathrm{z}^{\wedge} \mathrm{w}\right) \mathrm{v}\left(\mathrm{z}^{\wedge} \sim \mathrm{w}\right) \mathrm{v}\left(\sim \mathrm{z}^{\wedge} \mathrm{w}\right) \quad$ using commutative Law
$=\left(z^{\wedge}(\mathrm{w} v \sim \mathrm{w})\right) \mathrm{v}\left(\sim \mathrm{z}^{\wedge} \mathrm{w}\right) \quad$ using Distributive Law
$=\left(z^{\wedge} T\right) v\left(\sim z^{\wedge} w\right)$
using Complement Law
$=\mathrm{zv}\left(\sim \mathrm{z}^{\wedge} \mathrm{w}\right)$
using Identity Law
$=(\mathrm{zv} \sim \mathrm{z})^{\wedge}(\mathrm{z} v \mathrm{w})$
using Distributive Law
$=\mathrm{T}^{\wedge}(\mathrm{zvw})$
using Complement Law
$=(\mathrm{zvw})^{\wedge} \mathrm{T}$
$=\mathrm{Z} \mathrm{V} \mathrm{W}$
using Identity Law

THE END

