Linear Algebra
Summer Final Exam
Total: 50 Marks

Name= Shabban khan ID $=12994$
Question No: 1 10 marks

Find the eigenvalues of A

(2) page(3)

Question No. 2
Find a matrix P that diagonalizes the below matrix

Question No. 3
marks
Determine whether the vectors form linear dependent or independent sets.

Question No. 4
20 marks
What are the four main things we need to define for a vector space? Which of the following is a vector space over R? For those that are not vector spaces, modify one part of the definition to make it into a vector space.
a. $V=\{2 \times 2$ matrices with entries in $R\}$, usual matrix addition, and

$$
k \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
k & a \\
k c & d
\end{array}\right) \text { for } k \in R
$$

b. $\quad \mathrm{V}=\{$ Polynomials with complex coefficients of degrees $\leq 3\}$, with usual addition and scalar multiplication of polynomials.

assoche propth al R
paa(2)
The $2 e x$ plogmel $7-(n))=0$ at degr zom as th additu ldaty at $P_{n}(u)$ ard

$$
7 n(n)=a_{n}+\left(a_{1}\right) n+\cdots+\left(a_{n}\right) n^{3} \text { is }
$$

the addif invas of $7 \cdot n(x)$
comentats propers Zoblu th comet propeh 8 . Hem $P(n)$ is addin oberet grap

$$
\begin{aligned}
& \text { the scaah maltyy wt } a \in R \text { by } \\
& R(n)=a_{a} a_{a}\left(u_{n_{1}}\right) x+\left(\operatorname{cg}_{2}\right) x_{2} \cdots x^{2} S R_{1}(n)
\end{aligned}
$$

$$
\text { it obsera propats } 3 \cdot 2 \cdot 3 \mathrm{~L}(1 \text {-iv) at }
$$

Scala maliptos which con easl br

$$
P_{n}(n) \text { 7ron a vecter space on }
$$

(athen

