
SAIF ULLAH     ID:15598        MS(CS) 

Question: Assume you have a Client Server Environment in which 

the client request the server to multiply three given number i:e 67 90 

34 and return the result. Discuss the steps of the system in each of 

the following scenario. 

a) How the Request-Reply protocol function will be used with 

UDP(refer to figure 5.3 in book). How will be the message 

identifier used, what will be its failure model, how time outs 

will be used. How will the system handle duplicate messages 

and how will the system react if reply is lost.  

First we have to know about the request reply protocol that what is request reply protocol 

basically it’s represent a pattern on top of the message passing and support the two way 

exchange of message an encountered in client-server computing. In particular such protocols 

provide relatively low-level support for RPC and RMI. 

A protocol built over datagram avoids unnecessary overheads associated with the TCP stream 

protocol . in particular 

 Acknowledgement are redundant, since requests are followed by replies. 

 Establishing a connection involve two extra pairs of message in addition to the Pair 

require for a request and reply. 

 Flow control is redundant of the majority of invocations, which pass only small 

arguments and results. 

The protocol request reply protocol is based on trio of communication primitives,  doOperation , 

getRequest and send Reply . in this case we use UDP datagram the delivery must be provided by 

request reply protocol, which may use the sever reply message as an acknowledgement of the 

client request message . 

The doOperation method is used by client to invoke remote operation. First the client used the 

doOperation to access the remote operation we are going to used . The arguments specify the 

remote server and which operation to Invoke. The result contain in a byte array containing  the 

reply. 

 

 



 Client          server 

               Request message 

     doOperation         getRequest 

              :          select object 

 (Wait)   Reply message              execute method 

               : 

       (continues)                   sendReply       

 

 

Public byte[] doOperation (RemoteRef s, int operationaId, byte[]arguments) 

Send a request message to the remote server and return the reply. 

The argument specify the remote server, the operation to be invoked and the arguments of that 

operation. 

The first arguments of the doOperation is an instance of of the class RemoteRef, which represent 

reference for remote server. The arguments of doOperation getting the internet address and the 

port no of the associated server which they want. The doOperation method send a request 

message to multiply the three no 67, 90, 34 to the server whose internet address and port are 

specified in the remote reference given in an arguments. After sending a request message 

doOperation invokes receive to get a replay message from which it extract the result and return it 

to the caller. The caller of doOperation is blocked until the server performs the requested 

operation and transmits a reply message to the client process.   

 

Public byte [] getRequest(); 

Acquire a client request via the server port. 

getRequest is used by the server process to acquire server request. When the server has invoke 

the specific operation like multiplying of three no 67 90 and 34 , It then uses sendReply to send 

the reply message to the client. When the reply message is received by the client the original 

doOperation is unblocked and the execution of client program is continues. 

Public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); 



Send the reply message reply to the client as its internet address and port. 

Message Type                                      int (0= Request, 1=Reply) 

RequestId                                             int 

remoteReference                               RemoteRef 

operationId                                         int or Operation 

Arguments                                         //array of bytes 

 

The information to be transmitted in a request message or a reply message is shown above. The 

first field indicates whether the message is a request message or a reply message. The second 

field requestId contain a message identifier . third field is a remote reference. The fourth one is 

an identifier  for the operation to be invoke and the last one is arguments. 

Message Identifier: 

Any scheme that involve the management of messages to provide additional properties such as 

reliable message delivery .  

An message identifier consist of two main parts  

1. Request Id, which is taking from an increasing sequence  of integer by the sending 

process. Mean following number 67 90 and 34 has assigned a request Id according to the 

increasing number of sequence. 

2. An identifier for the sending process e.g its port and internet address. Mean that we have 

the identifier for the sending process that message can be identified by its identifier. 

 When the value of request Id reach the maximum value for an unsigned  integer (for example, 

232 – 1) it rest to zero. 

Failure model: 

The failure model of the following message can be discussed below. 

The suffer from omission failure. Mean that a mistake that consist of not doing something you 

should have done, or not including sometime such as an amount mean the  message we have 

send (multiplication of three numbers) has not doing the job we actually want. 

Secondly message are not guaranteed to be delivered in sender order. Mean the message we have 

send is not in order we want. 

We can also face the crash failure mean the system is halted and we will do all the operation 

again. 

 



Timeouts: 

Basically a request-response or request-reply is one of the basic method computer use to 

communicate with each other in which the first computer sends  a request for some data and the 

second response to the request. Usually there is a series of such interchanges until the complete 

message is send browsing a web page is an example of request-response communication .  

There are various option as to what doOperation can do after timeout. The simplest option is to 

return immediately from doOperation with an indication to the client that the doOperation has 

failed. Mean at the specific time the message(multiplication of three numbers) cannot be 

delivered . The timeout have been due to the request or reply message getting lost and in the 

latter case the operation will have been performed .To compensate for the possibility of lost 

message doOperation send the request message repeatedly until either it gets a reply or its 

responsibly sure  that the delay is due to lack of response from the server rather than lost 

message. 

Handle Duplicate message: 

When developing message processing system there can be scenarios where an identical message 

can be send by an applicant more than once. In computer science if an operation is able to handle 

multiple instance of the same input without changing the result we say that it is idempotent. 

Detecting duplicate message based on the default message id can be useful in scenario where an 

application sending message to a queue or topic needs to ensure that exactly one message is 

delivered. 

To avoid this, the protocol is designed to recognize successive message (from the same client) 

with the same request identifier  and to filter out duplicates. If the server has not yet send the 

reply, it need take no special action- it will transmit the reply when it has finished executing the 

operation. 

Reply Lost Message: 

    If a server has already send the reply when it receive a duplicate request it will need to execute 

the operation again to obtained the result, unless it has stored the result of the original execution. 

Some server can execute their operation more than once and obtained the same result each time. 

An idempotent operation is in operation that can performed repeatedly with the same effect as if 

it had been performed exactly once. A server whose operations is all idempotent need to take 

special measures to avoid executing its operations more than once. 

 

              Answer No a Ende 



b) How can the above system implemented using Remote 

Procedure Calls (RPC)? 
 

Answer b).  Remote Procedure Call: 

 

The Remote Procedure Call can be implemented for the above example are as follow. 

             Call         

    Return               

      client    server          

 You have caller so the caller making a call server executing the call and return but under the 

cover let see what happen. 

 C           S 

  

      Call trap      kernel             return trap 

 

When the caller makes its call(multiplication of three numbers) its trap into the kernel and what 

the kernel does it validate the call and its copy the arguments of the call into the kernel buffers  

from the client address base the kernel then locates the server procedure that its need to be 

executed copies the arguments that it’s buffer into the kernel buffer into the address base of the 

server in once it’s done that its schedule the run the particular procedure at server point the 

server procedure actually start executing using the arguments of the call  and performed a 

function that was requested by client(multiplication of 67 90 and 34). When the server procedure 

call is done the execution of the procedure its need to return the results ( 67*34*90=20502) of 

the procedure execution  back to the client in order to do that its going to trap into the kernel 

(return trap) and what the kernel the does at this point is to copy the results from the address base 

of the server into kernel buffer and then its copied out the result  from the kernel buffer into the 

clients address based and now at client point we have complete the result sending back to the 

client  so the then reschedule the client who can than  receive the result and go on in its marry 

way of executing whatever they need. More importantly all of these action is happening at 

runtime and that is one of the fundamental sources of  performing it. So Two trap in one 

procedure execution that the work that has been done by run time system and order to execute 

this RPC. 



We can also say that the software component required to implement RPC as shown in the figure 

below, the client that access a server (here we access the server for the operation of 

multiplication of three numbers) includes one stub procedure for each procedure in service 

interface. The stub procedure behave like a local procedure  to the client, but instead of executing 

the call, it marshal the procedure identifier  and the arguments into a request message, which 

send via its communication module to the server. When the reply message arrive, it unmarshals 

the results. The server process contain a dispatcher together with one server stub procedure and 

one server procedure for each procedure in the server interface. The dispatcher select one of the 

server stub  procedures according to the procedure identifier in the request message. The server 

stub procedure  

 

Then unmarshals the arguments in request message call( mean the result which client want i:e 

multiplication of three numbers) the corresponding service procedure and marshal the return 

values for the reply message. The service procedures implement the procedures in the service 

interface. The client in server stub procedures and the dispatcher can be guaranteed automatically 

by an interface compiler from the interface definition of the service. 

 

Example: 

 The example given in the question can be explain in the following steps using the following 

cleared explained figure. 



 

     Figure b 

First Step: The first step is the client call the procedure the client is calling the procedure as 

shown in the figure what type of procedure  it is k= address of 67,34,and 90. It calls that 

procedure where is the procedure the procedure is on server side.so the client stub will pack and 

unpacks  the parameters. 

Second step:  second step is the stub building message now it’s is sending to server side 

Third step: The message is sending across the network mean the two system as shown in the 

figure is connecting  over the network. 

Fourth step:  The server operating system hands messages to server stub  now what will the 

server operating system will do as shown in the figure sending message to the stub  

Fifth Step: The stub unpack the message if we unpack the message we get the original message  

Sixth step: Then stub makes local call to address so k= address of parameters is nothing but a 

local call to the server process its call the procedure and send back to the client. 

 

 

     Answer No b Ended 

 

 



C)  How can the above system implemented using Remote Method Invocation 

(RMI)? 

Answer c) Remote Method Invocation: 

 The core of the remote invocation call (RMI) implementation is remote reference layer (RRL). 

In that is a place where a lot of magic happen. The client side stub is going to initiate a remote 

method invocation call using remote reference layer (RRL). In all of the magic with respect to 

marshaling the arguments in order to send it over the network and so on is handle entirely by 

remote reference layer (RRL). In similarly when the result get back un marshaling the result into 

the data structure in which client is understand is once again done by the remote reference layer 

(RRL). On the server side the skeleton that exists is their for un marshaling the arguments that 

coming from the client. In order to un marshaling  the  argument the skeleton uses the remote 

reference layer because the remote reference layer knows how to un marshal the argument that 

are coming and the skeleton then make call up to the server that is implementing the remote 

object. Once the server is done the services the skeleton marshal the result and once again go the 

remote reference layer and send it over to the client and when its come back the remote reference 

layer and the stub work together to deliver the result in a digestible format to the client. 

 

 The Remote reference layer is doing all the magic with respect to how the server is handle the 

request is it replicated is it a single server. All of these thing and many more is handle in remote 

reference layer (RRL). So what that mean is it allow various invocation protocol between the 

client and the server and all of these thing is barred in the remote reference layer (RRL). 

Now what will the transport layer do the abstraction that the transport layer provide are the end 

point, transport, channels, and connections. 



End point is nothing but a protection domain. Consist of table of remote object that it can access  

Connection manager: it is that what is about all of the detail of connecting these end point 

together . in particular the connection management is responsible for setting up the connection, 

tear down the connection, listening from incoming connections and establishing the connection. 

When connection is established between two end points. The connection manager is also 

responsible for locating the dispatcher for a remote method that has been invoked on the end 

point .s o transport is listening in a channel when invocation come in transport layer is 

responsible for identifying or locating the dispatcher in the domain. Connection manager also 

responsible for the liveness of the connection. 

RRL is the one that is declared what is the right transport to use whether it’s a UDP or TCP and 

given that command to the connection manager. 

In another word we can also say that The software components required to implement RPC are 

shown in Figure 5.10. The client that accesses a service includes one stub procedure for each 

procedure in the service interface. The stub procedure behaves like a local procedure to the 

client, but instead of executing the call, it marshals the procedure identifier and the arguments 

into a request message, which it sends via its communication module to the server. When the 

reply message arrives, it unmarshals the results. The server process contains a dispatcher 

together with one server stub procedure and one service procedure for each procedure in the 

service interface. The dispatcher selects one of the server stub procedures according to the 

procedure identifier in the request message. The server stub procedure. 

Working of an RMI application: 

1. When the client make a call to the remote object it is received by the stub which 

eventually passes this request to the remote reference layer (RRL). 

2. When the client side remote reference layer receive the request, it invoke a method called 

invoke() of the object remote Ref(). It passes the request to the Remote reference layer on 

the server side. 

3.  When the remote reference layer passes the request on the server side to the skeleton 

(proxy on the server)which finally invoke the required object on the sever. 

4. The request is passed all the way back to the client. 

Example: 

 Steps to write RMI program: 

1. Create the remote interface  

2. Provide implementation on the remote interface. 

3. Compile the implementation class and create the stub and skeleton object using RMI tool. 

4. Start the registry service by RMI registry tool. 



5. Create and start remote application. 

6. Create and start client application. 

  

1. Create remote interface: 

For creating the remote interface, extend the remote interface and declare the remote 

exception with all method of remote interface. 

 

  Import java.rmi.*; 

  Public interface adder extends Remote 

  { 

   Public int add(int 67, int 34, int 90) throws remote exception 

    } 

2. Provide the implementation of the remote interface: 

For providing implementation we need to be  either extend the unicast remote objectclass, 

Or use the exportobject() method 

     Import java.rmi.*; 

       Import java.rmi.server.*; 

       Public class adder remote extend unicast remote object implement adder  

    { 

      Adder Remote() throws Remote Exception 

} 

{ 

     Super(); 



    } 

             Public int add (int 67, int 34, int 90); 

    Return(67 * 34 * 90); 

     

3. Create the stub and skeleton  object using the Rmi tool: 

Next step is to create stub and skeleton object using Rmi compiler. The RMI tool involve 

the RMI compiler and create stub and skeleton object. 

          Rmic adder Remote. 

4. Start the registry service by the RMI registry tool: 

Now start the service using RMI registry tool. If you don’t specify port no: it use the 

default no. 

   Let e.g rmi registry 7000; 

5. Create and run the server application 

6. Create and run the client application  

An another word we can also explain the remote invocation call as follow. 

Implementation of Remote Invocation call: 

Several separate objects and modules are involved in achieving a remote method invocation. 

These are shown in Figure below, in which an application-level object A invokes a method in a 

remote application-level object B for which it holds a remote object reference. This section 

discusses the roles of each of the components shown in that figure, dealing first with the 

communication and remote reference modules and then with the RMI software that runs over 

them. We then explore the following related topics: the generation of proxies, the binding of 

names to their remote object references, the activation and passivation of objects and the location 

of objects from their remote object references. 

Communication module: 

The two cooperating communication modules carry out the request-reply protocol, which 

transmits request and reply messages between the client and server. The contents of request and 

reply messages are shown in Figure. The communication module uses only the first three items, 

which specify the message type, its requestId and the remote reference of the object to be 

invoked. The operationId and all the marshalling and unmarshalling are the concern of the RMI 

software, discussed below. The communication modules are together responsible for providing a 

specified invocation semantics, for example at-most-once. The communication module in the 

server selects the dispatcher for the class of the object to be invoked, passing on its local 

reference, which it gets from the remote reference module in return for the remote object 



identifier in the request message. The role of dispatcher is discussed in the forthcoming section 

on RMI software. 

Remote reference module: 

A remote reference module is responsible for translating between local and remote object 

references and for creating remote object references. To support its responsibilities, the remote 

reference module in each process has a remote object table that records the correspondence 

between local object references in that process and remote object references (which are system-

wide). The table includes:  

• An entry for all the remote objects held by the process. For example, in Figure the remote 

object B will be recorded in the table at the server.  

• An entry for each local proxy. For example, in Figure the proxy for B will be recorded in the 

table at the client. The role of a proxy is discussed in the subsection on RMI software. The 

actions of the remote reference module are as follows:  

• When a remote object is to be passed as an argument or a result for the first time, the remote 

reference module is asked to create a remote object reference, which it adds to its table.  

• When a remote object reference arrives in a request or reply message, the remote reference 

module is asked for the corresponding local object reference, which may refer either to a proxy 

or to a remote object. In the case that the remote object reference is not in the table, the RMI 

software creates a new proxy and asks the remote reference module to add it to the table. This 

module is called by components of the RMI software when they are marshalling and un 

marshalling remote object references. For example, when a request message arrives, the table is 

used to find out which local object is to be invoked. 

 

         THE END 



 

 


