Department of Electrical Engineering Assignment

Date: 13/04/2020

Course Details	S
----------------	---

Course Title:	Digital Signal Processing	Module:	6th
Instructor:		Total	30
		Marks:	

Student Details

Name: Syed M Zahoor Student ID: 12595

Consider the following analog signal	Marks 5
 i. Determine the minimum sampling rate required to avoid aliasing. ii. Suppose that the signal is sampled at the rate □□= 100□□. What is the discrete-time signal obtained after sampling? Also explain the effect of this sampling rate on the newly generated discrete time signal. iii. What is the analog signal □(□) we can reconstruct from the samples if we use ideal interpolation? Consider a discrete time signal which is given by □(□) = {0.5□ \ 0, □ < 0} This is signal is sampled at the rate □□= 2□□. i. Draw the sampled signal. ii. The samples of the signals are intended to carry 3 bits per sample. Determine the quantization level and quantization resolution to quantized the sampled signal achieved in part i. iii. Perform the process of truncation and rounding off on all the values of the sampled signal and find the quantization error for each of the sampled data. Express your answer in tabular form. 	Marks 5 CLO 1
Determine the response of the system to the following input signal with given impulse response $\Box[\Box] = \{2, \frac{1}{4}, -2, 3, -4\} \qquad , h[\Box] = \{\frac{3}{4}, 1, 2, 1, 4\}$	Marks 5 CLO 2
	 i. Determine the minimum sampling rate required to avoid aliasing. ii. Suppose that the signal is sampled at the rate □□= 100□□. What is the discrete-time signal obtained after sampling? Also explain the effect of this sampling rate on the newly generated discrete time signal. iii. What is the analog signal □(□) we can reconstruct from the samples if we use ideal interpolation? Consider a discrete time signal which is given by □(□) = {0.5□ \ 0.5□ \ 0.0 This is signal is sampled at the rate □□= 2□□. i. Draw the sampled signal. ii. The samples of the signals are intended to carry 3 bits per sample. Determine the quantization level and quantization resolution to quantized the sampled signal achieved in part i. iii. Perform the process of truncation and rounding off on all the values of the sampled signal and find the quantization error for each of the sampled data. Express your answer in tabular form. Determine the response of the system to the following input signal with given impulse response

	(b)	Compute the convolution y(n) of the following signal	Marks 5
		□-+1 _3 < □ < 5	CLO 2
		$\Box(\Box) = \Box^{-1}, -3 \le \Box \le 5$	
		$^{\circ}0$, $^{\circ}$	
		$2^{\square}, \qquad 0 \leq \square \leq 4$	
		$ \begin{array}{c c} (&) & h & \bigcirc & 0 \le \square \le 4 \\ h & \square & = \{ 0 \\ 0 & \square & \square \end{array} $	
			Marks 10
		Determine the z- transform of the following signals and also sketch its Region of Convergence (ROC).	CLO 2
			CLO 2
Q3.		$\left(\frac{1}{4}\right)^{\square}, \square \geq 0$	
		i. $\Box(\Box) = \begin{cases} \begin{pmatrix} \frac{1}{4} & \square \\ $	
		3)	
		ii. $\square(\square) = \left\{ \begin{array}{l} 1 \\ 2 \\ 0, \end{array} \right. \square \supseteq 0$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Digital Signal Processing Name & Syed. M. Zahon

11 8- 12595

@ Qo Consider The following analog Synd Xa(t)=3coslooTt+4Sin2oont

O Determine The minimum Sampling rate required to avoid aliasing.

Ans According to Sampling Therem

fi= 100Hz . Fz= 200Hz

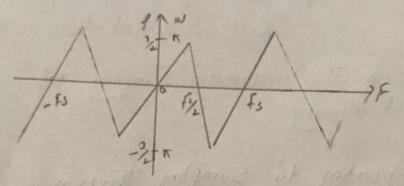
Fs > 7 max f= w

fr is my (greder then f.)

f. > 2×100 fs = 200 HZ

(i) Suppose That The Signal is sampled at The Yate fs=100Hz what is the disorde-time signal obtained after sampling? Also Explain The effect of This sampling rate on The newly generated discrete time signal.

Solutions


fs= 100 Hz

f= 100 = 50 Hz

2

This is the max Frequency that can be represented uniquely by The Sampled Synch As $X_{n} = 3\cos 2\pi \left(\frac{50}{100}\right)n + 4\sin 2\pi \left(\frac{100}{100}\right)n$.

= 3 cash (5)n + 4sin 2 kn

The effect of sampling rate on the newey generated discrete time signal is that

There will be no distby phenomenon mean there will not present unwanted comprent in he

recenstruction of The signals. The recutarist original

Signals

(ii) what is The analog Signal Ya(t) we can reconstruct from The Samples if we we ideal Interplations

Ans folding frevung = $\frac{J_1}{2} = \frac{100}{2}$ = 50HZ

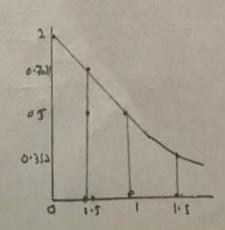
Fi=50Hz, fz=100HZ
Lose Bottframe frequency are either equal or greater
The folding frequency

3

Hence for ideal Interpolation we can construct

X(1)=3 COS 100T + 45m 2007+

Since only The Frequency compounts at 100Hz are present on The Sampled signals The analog signals the analog signal we can remove or reconstruct is york = 3 coslootte Ans.

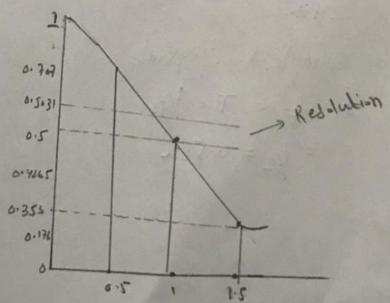

6) consider a discrete time signal which is given by $x(n) = \xi \circ 5^n n \approx 0$

This is signal is sampled at the rate $F_s = 2HZ$.

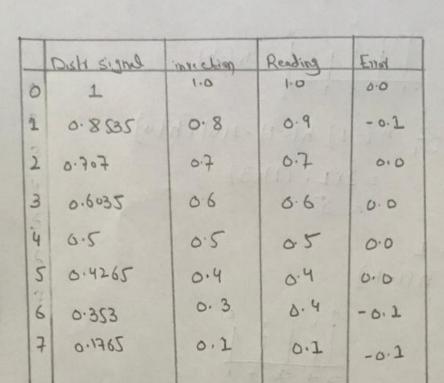
1 Draw The Sampled Signal.

= 1/2 = 0.5 Sec

[Xn	0.20
0	1
0.5	0.7071
12	0.5
1.5	0.33


Ansa

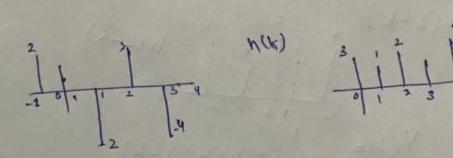
L= 2h n= bHs = 3 L= 23= 8 Levels


Resolution = Xmax - Xmin

= 1-0

= 000 0.125

	-	5	c	
1		7	٦	١
1	١	١)
-		-		r


(5)

@ Determin The response of the Syram too The Oblining Input Signal with given Impulse

response.

X[n]= 92.1,-23,-43, h[n]= 93,12,1,43

Solutions Y[h] = \(\text{K} \text{K} \text{h} (n-K)

$$\chi(-2) h(-1) + \chi(0) + h(0) + \chi(1)(1)$$

$$= (2)(1) + (1)(1) + (-2)(1) + (3)(3)$$

$$= (2)(1) + (1)(1) + (-2)(1) + (3)(3)$$

$$= (2)(1) + (1)(1) + (-2)(1) + (3)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1) + (1)(1) + (1)(1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1) + (1)(1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1) + (1)(1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

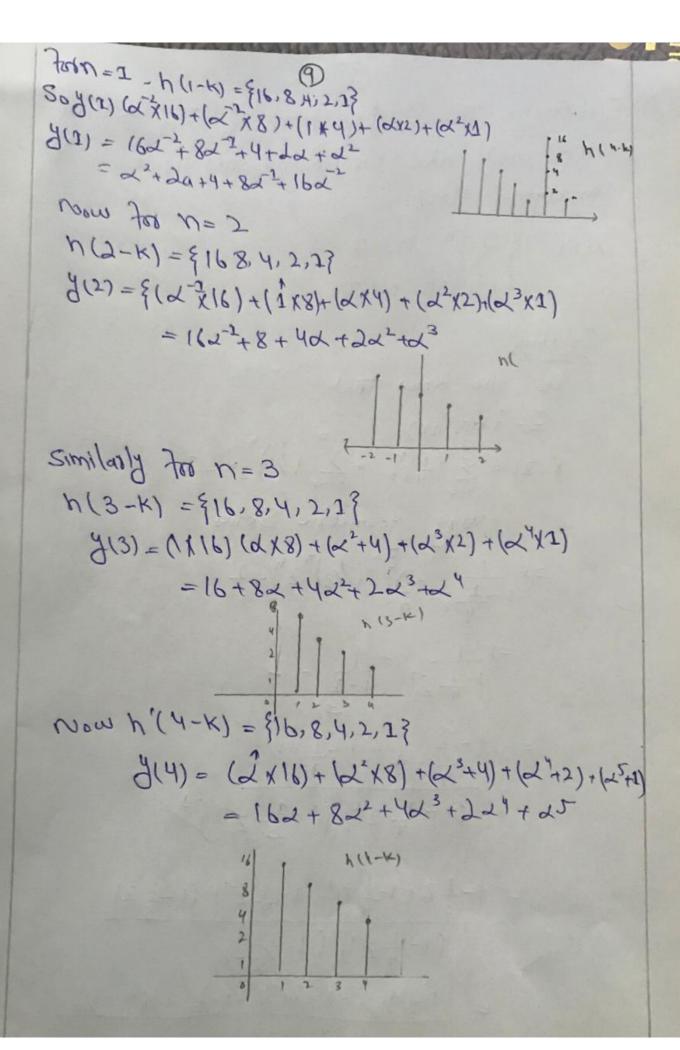
$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1) + (1)(1)(1)$$

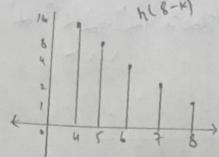
$$= (1)(1) + (1)(1)(1)$$


$$= (1)(1) + (1)(1)(1)$$

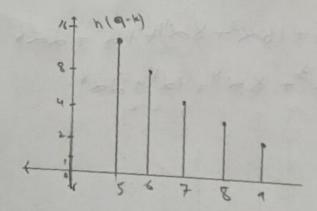
$$= (1)(1) + (1)(1)(1)$$

$$= (1)(1)(1) + (1)(1)(1)$$

$$= (1)(1)(1)(1) + (1)(1)(1)$$


$$= (1$$

81976 =) h(5-K) = {0.16,8,4,2,2} 7(5)= (dx6) + (dx16)+(d3x8)+(dx4)+(d5x2) =16×2+ 823+424+225+26 + (26x1) Similarly if we calculate for rost of the values of n up till there are any common values we get. y(6) = 0+0+1623+824+425+226 = 1623+824+425+226 J(7) = 0+0+0+162+825+426 = 162 + 825 + 421


3(8) - 0+0+0+0+1625+ 8d6

=> 1625+8x1

3(9) = 6+0+0+0+0+1626

= 1626

1 x(n) = {(\frac{1}{4})h, h 20 (\frac{1}{3})-h h 20

Solution

As we know that

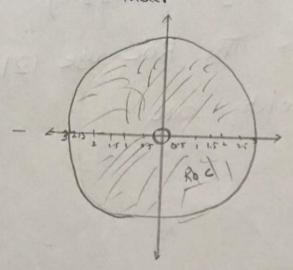
Z-tansform

$$X(z) = \sum_{n=0}^{\infty} (\frac{1}{4})^n + \sum_{n=\infty}^{\infty} (\frac{1}{3})^n - 1$$

using geometric Series

$$=\frac{1-\frac{1}{4}}{\frac{1}{4}}\frac{1}{2^{-1}}\frac{1}{1}\frac{1}{1}$$

$$=\frac{1-\frac{1}{4}}{\frac{1}{4}}\frac{1}{2^{-1}}\frac{1}{1}\frac{1}{1}\frac{1}{1}$$


$$=\frac{1-\frac{1}{4}}{\frac{1}{4}}\frac{1}{2^{-1}}\frac{1}{1}\frac{1}{1}\frac{1}{1}$$

$$=\frac{1-\frac{1}{3}z+1-\frac{1}{4}z^{2}-(1-\frac{1}{4}z^{-2})(1-\frac{1}{3}z)}{(1-\frac{1}{4}z^{-2})(1-\frac{1}{3}z)}$$

$$=\frac{13}{12} \frac{1}{(1-\frac{4}{4}2^{-2})(1-\frac{1}{3}2)}$$

Hence The ROC is 4 212143

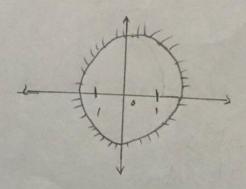
The sketch is under

 $(n) = \frac{5(1/2)^n - 3^n}{0}, n > 0$ elsewhere

Solution Using The Z-+ Yansform PAN equ

1.6 x(n) = 2"4(n) => x(2) = 1-221 > EVB

By Putting value


$$\chi_{L}(z) = \frac{2}{2} \sum_{n=0}^{\infty} (\frac{1}{2}) \sum_{n=0}^{\infty} \frac{1}{2^{n}} \sum_{n=0}^{\infty} 2^{n} z^{-n}$$

$$= \frac{1}{1-1} z^{-3} - \frac{1}{1-2} z^{2}$$

$$= \frac{-5}{2} z^{-1}$$

$$\left(-\frac{1}{2} z^{2} \right) \left(1 - 2 z^{-2} \right)$$

A Seen the Roc use 12172 The Sketch are

