Name	M Mamoon
ID	7690
Sec	<i>C</i>
Dep	civil engineering
Subject	Probibility
Assignment	Mid term
Semester	8 th
Submitted to	Anwar shamim

Question
$$N_{0}$$
 1:
Solution: (Grouped frequency Distribution)
largest value = 10
Smallest value = 0
Range = 10-0 = \$10
We decide to take 5 classes of equal
 $h = \frac{9}{5} = \frac{2}{1000}$ Gry 2.1
 $h = 2.1$
Class class frequency
 $ueight)$ boundaries point Tally Frequency
 $-2 - 0.05 - 2.05 \pm 1$ NU NU NU NU 1 31

(weight)	bounelasties	Point	Tally	Frequency
0-2	-0.05 - 2.05	1	MUL MAL 111	13
2.1-4.1	2.05 - 4.015	3.1	LAT LAT WAT LAT I	21
4.2 - 6.2	4.15 - 6.25	5.2	WH IIII	9
6.3 - 8.3	6.25 - 8.35	8.3	LHAT	5
8.4 - 10.4	0.35-10.45	9.4	1)	2
Total	· · · ·			50

Un gro	oup Exague	enery distrik	miture.
Number of Childern	Tally	frequency	C. frequency.
0 1 2 3 4 5 6 7 8 9 10	וווו איז נאון איז נאון איז גאון איז גער גער גער גער גער גער גער גער	1 4 8 14 7 5 4 3 2 1	1 5 13 27 34 39 43 46 48 46 48 49 50
Total		50	

Crowped factories distribution.
Mode:

$$M = t + \frac{f_m - f_1}{e^{(f_m - f_1) + (f_m - f_2)} \times h}$$

$$d = 2.05$$

$$f_m = 21$$

$$f_1 = 13$$

$$f_2 = 9$$

$$h = 2.1$$

$$M = 2.05 + \frac{(21 - 13)}{(21 - 13) + (21 - 9)} \times 21$$

$$M = 2.89 \approx 3$$

$$M = 2.89 \approx 3$$

Meelian.

6

$$\frac{n}{2} = \frac{50}{2} = 25$$

So

$$l = 2.05$$

 $h = 2.1$
 $f = 21$
 $c = 13$

Meelian:

$$\begin{array}{r} l+\frac{h}{f}\left(\frac{h}{a}-c\right) \\ = 2.05+\frac{2.1}{a1}\left(\frac{50}{a}-13\right) \\ = 3.25 \approx 3. \end{array}$$
Median = 3.

6 Ongrouped facturery distribution. Mode : In Ungrouped date the highest frequency. is 14 so the number of childerns in front of 14 is 3 tus Mode = 3 Meelian: Our data is even as it is so 50 Median = n = 50 = 25

Question: - 2				
Classes	class boundries	frequency (f)	Comulative frequency (CF)	
2-4	1-5	3	3	
6-8	5-9	13	16	
10-12	9 - 13	6	22	
14-16	13-17	10	32	
12 - 20	17-21	5	37	
10 - 24	21-25	3	40	
22-21	25 - 29	S	45	
2 22	29-33	3	48	
30- 32	33-37	2	50	
Quartilies	<u></u>	2=50		
	$Q_1 = \frac{n}{4} =$	<u>so</u> = 1. 4	2-5	
12	.5 lies in s	5-9 class	boundry	
50,		,	7	
Q1	= 1+h (1) f	3c)		
= 5 + 2 50 - 2]				

$$(1)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$(2)$$

$$\begin{aligned} & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} \\ & \varphi_{n} = \frac{1}{2} \underbrace{\varphi_{n}} \end{aligned}$$

Deciles:-

$$\lambda_{i}^{z} \frac{M}{10} = \frac{50}{10} = 4$$

4 lies in 5-9 class boundry

Hence,

$$D_{1} = l + \frac{h}{f} \left(\frac{n}{10} - c \right)$$

= $S + \frac{2}{13} \left(\frac{S0}{10} - 3 \right)$
= $S + \frac{2}{13} \left(S - 3 \right)$
= $S + 0.15 \left(2 \right)$
= $S + 0.30$

$$D_2 = \frac{2N}{10} = \frac{2\times50}{10} = 10$$

to lies in 5-9

4

$$D_{2} = l + \frac{h}{f} \left(\frac{2n}{10} - c \right)$$

$$D_{2} = 5 + \frac{2}{13} \left(\frac{2 \times 50}{10} - 3 \right)$$

5

$$D_2 = 5 + 0.15 (10 - 3)$$

 $D_2 = 5 + 0.15(7)$

$$D_2 = 6.07$$

$$D_3 = \frac{3n}{10} = \frac{3+50}{10} = 15$$

Hence

$$D_{3} = l + \frac{h}{f} \left(\frac{3 \times 50}{10} - 3 \right)$$

$$D_{3} = 5 + \frac{2}{13} \left(\frac{3 \times 50}{10} - 3 \right)$$

$$D_{3} = 5 + 0.15 \left(12 \right)$$

$$D_{4} = \frac{4n}{10} = \frac{4 \times 50}{10} = 20$$

6

$$20 \ (15) \ (1-15)$$

$$D_{y} = q + 0.33 (y)$$

$$D_{S} = \frac{S_{N}}{10} = \frac{S \times S_{0}}{10} = 2S$$

25 lies in 13-17 class boundary

Hence

$$Ds = 13 + \frac{2}{10} \left(\frac{5 \times 50}{10} - 22 \right)$$

$$Ds = 13 + 0.2 \left(25 - 22 \right)$$

Ds = 13 + 0.6 = 13.6

$$D_{6} = \frac{6n}{10} = \frac{6\times50}{10} = 30$$

30 lies in 13-17 class boundary

Ð

Hence

SW

N

$$D_{6} = l + \frac{h}{f} \left(\frac{6n}{10} - c \right)$$

= 13 + $\frac{3}{10} \left(\frac{6 \times 50}{10} - 22 \right)$
= 13 + $\frac{3}{10} \left(30 - 22 \right)$
= 13 + 0 - 2 (8)
= 13 + 1 - 6
$$D_{6} = 19 + 1 - 6$$

$$D_7 = \frac{7n}{10} = \frac{7\times50}{10} = 35$$

8

Hence

$$D_{7} = l + \frac{h}{f} \left(\frac{7x}{10} - 32 \right)$$

= $17 + \frac{2}{5} \left(\frac{7x50}{10} - 32 \right)$
= $17 + \frac{2}{5} \left(\frac{7x50}{10} - 32 \right)$
= $17 + \frac{2}{5} \left(3 \right)$
= $17 + 1.2$

$$D_8 = \frac{8n}{10} = \frac{8 \times 50}{10} = 40$$

40 lies in 21-25 class boundry

Hence,

$$D_8 = l + \frac{l_1}{f} \left(\frac{8n}{10} - C \right)$$

$$D_8 = 21 + \frac{2}{3} \left(\frac{8 \times 60}{10} - 37 \right)$$

$$D_8 = 21 + \frac{2}{3} \left(40 - 37 \right)$$

$$= 21 + 0.66 (3)$$

$$= 21 + 1.98$$

$$D_8 = 22.98$$

$$D_q = \frac{q_N}{10} = \frac{q \times 50}{10} = 45$$

$$D_q = l + \frac{f}{r} \left(\frac{q_n}{r} - c \right)$$

$$D_q = 25 + \frac{2}{5} \left(\frac{9 \times 50}{10} - \frac{2}{10} \right)$$

$$D_q = 25 + \frac{2}{5} (45 - 40)$$

 $D_q = 25 + 0.4(5)$

Pg = 29

Question No: 3

Define the following.

(a)

Random Statistics

The fields of mathematics, probability, and statistics use formal definitions of randomness. In statistics, a random variable is an assignment of a numerical value to each possible outcome of an event space .This association facilitates the identification and the calculation of probabilities of the events.

(b)

Inferential Statistics:

- Inferential Statistics is a branch of statistics through which we collect the data, analysis the data, summarize the data, interpretate the data and tabulate the data to get precise result in non-numerical form. OR
- The process of reaching generalizations about the whole by examining a portion is called inferential statistics.

• By using inferential statistics we draw inference about the characteristics of related problem and our inference gives non-numerical results.

(c)

Descriptive statistics

can be defined as:

- The collection of data, analysis of data, summarization of data, interpretation of data, tabulation of data at last we get a precise result in numerical form is called descriptive statistics OR
- Descriptive statistics is concerned with the summarization and describing a body of data OR
- Descriptive statistics is that branch of statistics which deals with concepts and methods concerned with summarization and description of important aspect of numerical data.

Sources of Primary Data:

- i. Direct personal investigation.
- ii. Indirect investigation
- iii. Interview method
- iv. Collection through Enumerators.
- v. Questioner method
- vi. Collection through local sources
- vii. Computer interview method

(e)

Nominal Scale:

It can be define as "the classification of the observation into mutually exclusive qualitative classes is said to be nominal scale"

E.g:

- i. Students are classified as male and female. We may use number 1 and 2.
- ii. Rainfall may be classified as heavy, moderate and light.We may use number 1,2, and 3

The numbers when they are used, only identify the categories. In this scale no particular order is used