
IQRA NATIONAL UNIVERSITY

FUNDAMENTALS OF PROGRAMMING MID PAPER

NAME: FAREHA MEHMOOD JEHANGIRI

ID: 16051

SUBMITTED TO: DR. FAZAL E MALIK.

Question.1
a) Draw the flow chart to get two integer items from keyboard and

then display to the screen their sum, difference and product.

Answer:

Flowchart: A “picture” of an algorithm using specific symbols to indicate
various programming constructs.

In simple words, a flowchart provides a detailed picture of the algorithm
using special symbols to represent various program statements. A

flowchart will always be drawn from top to bottom showing the exact
order of the steps.

There are three flowchart symbols necessary for programs involving
simple sequence. Begin/End of a block (written inside a horizontal oval),

the process (written inside a rectangle), Input/Output (written inside a
slanted rectangle or parallelogram)

Flowchart:

Question.1
b) Draw the flow chart to prompt the user for a temperature in
degrees Celsius (C), then convert the temperature in degrees

Fahrenheit (F) using the following formula and display temperature in
Fahrenheit (F) on monitor.

F=9/5 x C + 32

Flowchart:

Question.2
 a) Draw the flow chart and write a C++ program to find the Area

and Perimeter of a Rectangle using the below formulae

Area of rectangle: height*width
Perimeter of rectangle: 2*(height + width)

Program screenshot:

Flowchart:

Question.2
b) Draw the flow chart and write a C++ program to obtain the

radius of a circle. Then program calculates the area and perimeter
using the below Formulae

Area of Circle = π*R*R
Circumference formula C = 2 * π * R. where π=3.14

Program screenshot:

Flowchart:

Question.3
a) Discuss different types of programming languages.

Answer:

Language is a medium or way of communication. In the programming
terminology, language is a tool which provides a platform through which
we can communicate to the computer by writing computer programs.

1. Procedural Programming Language:
The procedural programming language is used to execute a sequence

of statements which lead to a result. Typically, this type of programming
language uses multiple variables, heavy loops and other elements,

which separates them from functional programming languages.
Functions of procedural language may control variables, other than

function’s value returns. For example, printing out information.

2.Functional Programming Language:
Functional programming language typically uses stored data, frequently

avoiding loops in favor of recursive functions. The functional
programming’s primary focus is on the return values of functions, and

side effects and different suggests that storing state are powerfully
discouraged. For example, in an exceedingly pure useful language, if a

function is termed, it’s expected that the function not modify or perform
any o/p. It may, however, build algorithmic calls and alter the parameters
of these calls. Functional languages are usually easier and build it easier

to figure on abstract issues, however, they’ll even be “further from the
machine” therein their programming model makes it difficult to know
precisely, but the code is decoded into machine language (which are

often problematic for system programming).

3.Object-oriented Programming Language:
This programming language views the world as a group of objects that

have internal data and external accessing parts of that data. The aim this
programming language is to think about the fault by separating it into a
collection of objects that offer services which can be used to solve a

specific problem. One of the main principle of object oriented
programming language is encapsulation that everything an object will

need must be inside of the object. This language also emphasizes
reusability through inheritance and the capacity to spread current

implementations without having to change a great deal of code by using
polymorphism.

4.Scripting Programming Language:
These programming languages are often procedural and may comprise
object-oriented language elements, but they fall into their own category

as they are normally not full-fledged programming languages with
support for development of large systems. For example, they may not

have compile-time type checking. Usually, these languages require tiny
syntax to get started.

5.Logic Programming Language:
These types of languages let programmers make declarative statements
and then allow the machine to reason about the consequences of those

statements. In a sense, this language doesn’t tell the computer how to do
something, but employing restrictions on what it must consider doing.

Question.3
b) How many translators are there to translate higher level language to

machine language? Discuss.

Answer:

A high-level language is a programming language that uses English and
mathematical symbols, like +, -, % and many others, in its instructions.

When using the term 'programming languages,' most people are actually
referring to high-level languages. High-level languages are the languages

most often used by programmers to write programs. Examples of high-
level languages are C++, Java and Python.

High-level language programs must be translated into machine language
before they can be executed. Machine language instructions are encoded

as binary numbers that are meant to be used by a machine, not read or
written by people. Whereas high-level languages use a syntax that is

closer to human language.

A translator, in software programming terms, is a generic term that could
refer to a compiler, assembler, or interpreter; anything that converts
higher level code into a language that the processor can understand,

such as assembly language or machine code.

Compilers:
Compilers convert high-level language code to machine (object) code in
one session. Compilers can take a while, because they have to translate

high-level code to lower-level machine language all at once and then save
the executable object code to memory. A compiler creates machine code

that runs on a processor with a specific Instruction Set Architecture.
Compilers will report errors after compiling has finished.

Interpreters:
Another way to get code to run on your processor is to use an interpreter,
which is not the same as a compiler. An interpreter translates code like a
compiler but reads the code and immediately executes on that code, and

therefore is initially faster than a compiler. Thus, interpreters are often
used in software development tools as debugging tools, as they can

execute a single in of code at a time. Compilers translate code all at once
and the processor then executes upon the machine language that the

compiler produced. If changes are made to the code after compilation,
the changed code will need to be compiled and added to the compiled

code (or perhaps the entire program will need to be re-compiled.) But an
interpreter, although skipping the step of compilation of the entire

program to start, is much slower to execute than the same program that’s
been completely compiled.

