Department of Electrical Engineering

Assignment
Date: 13/04/2020

Course Details

Course Title: Linear Circuit Analysis
保
Instructor: Sir Sohail Imran

Module: 2
30
Total Mark \qquad

Student Details

Name: Hasnat Khan
\qquad

Student ID: 16631

		Determine the power supplied by the leftmost element in the circuit of following figure	PLO1
	(c)	Following figure depicts the current-voltage characteristic of three different resistive elements. Determine the resistance of each, assuming the voltage and current are defined in accordance with the passive sign convention.	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Marks } \\ 3 \end{array} \\ \hline \text { PLO1 } \end{array}$
		 (a) (b) (c)	
Q2	(a)	Refer to the circuits of following figures, and answer the following: 1. How many distinct nodes are contained in the circuit?	Marks 4

		2. How many elements are contained in the circuit? 3. How many branches does the circuit have? 4. Determine if each of the following represents a path, a loop, both, or neither: i. $\quad \mathrm{A}$ to B ii. $\quad \mathrm{B}$ to D to C to E iii. C to E to D to B to A to C iv. $\quad \mathrm{C}$ to D to B to A to C to E	PLO2
	(b)	For the circuit of following figure (which is a model for the dc operation of a bipolar junction transistor biased in forward active region), I_{B} is measured to be $100 \mu \mathrm{~A}$. Determine I_{C} and I_{E}	$\begin{array}{\|l\|} \hline \text { Marks } \\ 6 \\ \hline \text { PLO2 } \\ \hline \end{array}$
Q3	(a)	Although drawn so that it may not appear obvious at first glance, the circuit of following figure is in fact a single-node-pair circuit. a. Determine the power absorbed by each resistor. b. Determine the power supplied by each current source. c. Show that the sum of the absorbed power calculated in (a) is equal to the sum of the supplied power calculated in (b).	Marks 5 PLO1
	(b)		Marks 5

Ans 1(a):-

First we have to use Ohm's Law

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R}
\end{aligned}
$$

First find Power :

$$
P=V I
$$

To find first circuit. So we have to take the current in opposite side means with negative sign

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R} \\
& I=\frac{5 v}{10000 \Omega} \\
& I=0.0005 A \\
& I=0.5 m A
\end{aligned}
$$

Now for Power

$$
\begin{aligned}
& P=V I \\
& P=5 \times 0.5 \times 10^{-3} \\
& P=2.5 \times 10^{-3} \\
& P=0.25 \mathrm{~mW}
\end{aligned}
$$

Now for 2^{ND} circuit:

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R} \\
& I=\frac{-5 v}{10000 \Omega} \\
& I=-0.0005 A \\
& I=-0.5 m A
\end{aligned}
$$

For power

$$
\begin{aligned}
& P=V I \\
& P=5\left(-0.5 \times 10^{-3}\right) \\
& P=-2.5 \times 10^{-3} \\
& P=-0.0025 \mathrm{~W} \\
& P=-0.25 \mathrm{~mW}
\end{aligned}
$$

For $3^{\text {rd }}$ circuit:

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R} \\
& I=\frac{-5 v}{10000 \Omega} \\
& I=-0.0005 A \\
& I=-0.5 \mathrm{~mA}
\end{aligned}
$$

Then Power

$$
\begin{aligned}
& P=V I \\
& P=5\left(-0.5 \times 10^{-3}\right) \\
& P=-2.5 \times 10^{-3} \\
& P=-0.25 \mathrm{~mW}
\end{aligned}
$$

Now Circuit $4^{\text {th }}$:

$$
\begin{aligned}
& V=I R \\
& I=\frac{V}{R} \\
& I=\frac{5 v}{10000 \Omega} \\
& I=0.5 m A
\end{aligned}
$$

For Power

$$
\begin{aligned}
& P=V I \\
& P=5\left(0.5 \times 10^{-3}\right) \\
& P=2.5 \times 10^{-3} \\
& P=0.25 \mathrm{~mW}
\end{aligned}
$$

Ans 1(b):

We know that

$$
\begin{aligned}
& P=V I \\
& P=2 v \times 2 A \\
& P=4 W
\end{aligned}
$$

In this circuit voltage and current are given
We will multiply two factors to find power

$$
2 v \times 2 A=4 w
$$

This $4 w$ is supplied. And we will take current with positive sign.

Ans 1(c):
For this we have to use Ohm's Law

$$
\begin{aligned}
& V=I R \\
& O R \quad R=\frac{V}{I}
\end{aligned}
$$

To find R take the value of I and V from the graph

Solution (a)

Given that

$$
\begin{aligned}
& I=0.01 m A \\
& V=1 V \\
& R=?
\end{aligned}
$$

Calculation:

Using Ohm's Law
$V=I R$
$R=\frac{V}{I}$
$R=\frac{0.5 A}{5 V}$
$R=10 \mu S$
$R=\frac{1 v}{0.01 \times 10^{-3}}$
$R=100 \times 10^{3}$
$R=100 \mathrm{k} \Omega$

Solution (b)

Given that:

From graph we know that current is zero

$$
\begin{aligned}
& V=1 v \\
& I=0 \\
& R=?
\end{aligned}
$$

Calculation:

We know that

$$
\begin{aligned}
V & =I R \\
R & =\frac{V}{I} \\
R & =\frac{1 v}{0} \\
R & =\infty
\end{aligned}
$$

Solution (c)

Given that:

From this graph we come to know that the current is infinite

$$
\begin{aligned}
& V=1 v \\
& I=\infty \\
& R=?
\end{aligned}
$$

Calculation:

We know that

$$
\begin{aligned}
V & =I R \\
R & =\frac{V}{I} \\
R & =\frac{1}{\infty}
\end{aligned}
$$

$$
R=0 \quad \text { So, we have zero resistance }
$$

Ans 2(a):

1) Number of nodes $=4$
2) Number of elements $=5$
3) Number of branches $=5$
4)

i. Neither
ii. Only path
iii. Path and loop
iv. neither

Ans 2(b):

We know that KCL tells us that

Total current entering a node $=$ total current leaving a node
So by this equation;

$$
\mathrm{I}_{B}+I_{C}=I_{E}
$$

Or

$$
\begin{aligned}
& \mathrm{I}_{E}=I_{B}+I_{C} \Rightarrow \mathrm{I}_{C}=150 . I_{B} \\
& \mathrm{I}_{C}=15 \mathrm{~mA}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \mathrm{I}_{E}=150 \times 10^{-3}+100 \times 10^{-6} \\
& \mathrm{I}_{E}=15.1 \mathrm{~mA}
\end{aligned}
$$

Ans 3(a):

We know that

$$
\mathrm{V}=\mathrm{IR}
$$

So

$$
\mathrm{V}=2 \times 637 \times 10^{-3} \Rightarrow 1.274 \mathrm{~V}
$$

Now find current I of each

$$
\mathrm{V}=\mathrm{IR}
$$

$$
\mathrm{I}=\frac{V}{R}
$$

Let

$$
\begin{aligned}
& \mathrm{I}_{X}=\frac{1.274 v}{1000 \Omega} \\
& \mathrm{I}_{X}=0.001274 A \\
& \mathrm{I}_{X}=1.274 \mathrm{~mA}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \mathrm{I}_{Y}=\frac{1.274 v}{2800 \Omega} \\
& \mathrm{I}_{Y}=0.000455 \mathrm{~A} \\
& \mathrm{I}_{Y}=0.455 \mathrm{~mA}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathrm{I}_{Z}=\frac{1.274 v}{4700 \Omega} \\
& \mathrm{I}_{Z}=0.000271 \mathrm{~A} \\
& \mathrm{I}_{Z}=0.271 \mathrm{~mA}
\end{aligned}
$$

Now to find Power,
We know the equation

$$
\begin{aligned}
P & =V I \\
\Rightarrow \quad P(2.8 \mathrm{k}) & =(1.274 \mathrm{v})(0.455) \\
& =0.5797 \mathrm{~mW} \\
\Rightarrow \quad \mathrm{P}(4.7 \mathrm{k}) & =(1.274)(0.271) \\
& =0.3452 \mathrm{~mW} \\
\Rightarrow \quad \mathrm{P}(1 \mathrm{k})= & (1.274)(1.274) \\
& =1.6230 \mathrm{~mW}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{P}(5 \mathrm{~mA}) & =(1.274)(-5) \\
& =-6.37 \mathrm{~mW} \\
\Rightarrow \quad \mathrm{P}(3 \mathrm{~mA}) & =(1.274)(3)
\end{aligned}
$$

Ans 3(b):
In this circuit first we will calculate the source and equivalences:

$$
\begin{aligned}
i_{e q} & =4-2 i+3-9 \\
& =4-2 i-6 \\
\mathrm{i}_{e q} & =-2-2 i \\
R_{e q} & =(6+3 \| 5)\|6\| 6 \\
R_{e q} & =8.5 \| 3=2.217 \Omega
\end{aligned}
$$

Now find voltage V:

$$
\begin{aligned}
& V=i_{e q} \cdot \mathrm{R}_{e q} \\
& V=(-2-2 i)(2.217 \Omega)
\end{aligned}
$$

From diagram;

$$
\begin{gathered}
V=6 i \\
6 i=(-2-2 i)(2.217) \\
6 i=-4.434-4.434 i \\
6 i+4.434 i=-4.434 \\
10.434 i=-4.434 \\
\mathrm{i}=\frac{-4.434}{10.434} \\
\mathrm{i}=-0.424 \mathrm{~A} \\
v=-2.55 v \\
\text { So, } \\
\quad P=\frac{V^{2}}{R} \\
P_{15 \Omega}=\frac{(-2.55)^{2}}{15} \\
V_{15 \Omega}=\frac{6}{6.25} \\
V_{15 \Omega}=1.8 v
\end{gathered}
$$

Now Power,

$$
\begin{aligned}
P_{15 \Omega} & =\frac{V^{2}}{R} \\
& =\frac{(1.8)^{2}}{15 \Omega} \\
& =\frac{3.24}{15} \\
P_{15 \Omega} & =0.216 \mathrm{~W}
\end{aligned}
$$

Finished !

