Name = Syed Junaid Ali Shah
 * ID No = 16373
 Department $=$ BS Software Engineering (SE)
 * Paper = Discrete Structure
 * Instructor: Muhammad Abrar Khan
 * Examination: Midterm Assignment

Q. 1

Which of the following are propositions?
a) Buy Premium Bonds!

Answare No1: Commands are not Statements (Not a Proposition)
b) The Apple Macintosh is a 16 bit computer.

Answare No2: False
c) There is a largest even number.

Answare No3: True (Proposition)
d) Why are we here?

Answare No4: Not a Proposition. It is a Question.
e) $8+7=13$

Answare No5: False (Not a Proposition)
f) $a+b=13$

Answare No6: Not a Statements . (Not a Proposition). Because the result can be either true or false.
Q. 2
p is " $\mathrm{x}<50$ "; q is " $\mathrm{x}>40^{\prime}$ ".
Write as simply as you can:
(a) $\neg p$

Answare No1: \mathbf{X} is not < (less than) 50
(b) $\neg q$

Answare No2: X is not $>$ (Greater than) 40
(c) $\mathrm{p} \wedge \mathrm{q}$

Answare No3: X is $<\mathbf{5 0}$ and X is $>\mathbf{4 0}$
(d) $\mathrm{p} \vee \mathrm{q}$

Answare No4: X is $<\mathbf{5 0}$ or X is $>\mathbf{4 0}$
(e) $\neg \mathrm{p} \wedge \mathrm{q}$

Answare No5: \mathbf{X} is not < (less than) 50 and X is >40
(f) $\neg \mathrm{p} \wedge \neg \mathrm{q}$

Answare No6: X is not < (less than) 50 and X is not $>($ Greater than) 40

Q. 3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg \mathrm{p}$? (There may be more than one correct answer.)
(a): p is "Some people like Maths".
(a) "Some people dislike Maths"
(b) "Everybody dislikes Maths"
(c) "Everybody likes Maths"

Answare No1: Some people dislike Maths.

b): p is "The answer is either 2 or 3 ".
(a) "Neither 2 nor 3 is the answer"
(b) "The answer is not 2 or it is not 3 "
(c) "The answer is not 2 and it is not 3 "

Answare No2: The answer is not $\mathbf{2}$ or it is not 3 .
c): p is "All people in my class are tall and thin".
(a) "Someone in my class is short and fat"
(b) "No-one in my class is tall and thin"
(c) "Someone in my class is short or fat"

Answare No3: No-one in my class is tall and thin.

Q. 4

Construct truth tables for:
a) $\neg p \vee \neg q$

Answare No1:

p	q	$\neg \mathrm{p}$	$\neg \mathrm{q}$	$\neg \mathrm{p} \vee \neg \mathrm{q}$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

b) $q \wedge(\neg p \vee q)$

Answare No2:

p	q	$\neg \mathrm{p}$	$\neg \mathrm{p} \vee \mathrm{q}$	$\mathrm{q} \wedge(\neg \mathrm{p} \vee \mathrm{q})$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	F

c) $\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$

Answare No3:

p	q	r	$\mathrm{q} \vee \mathrm{r}$	$\mathrm{p} \wedge(\mathrm{q} \vee \mathrm{r})$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	T	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	F

d) $(p \wedge q) \vee r$

Answare No4:

\mathbf{p}	\mathbf{q}	\mathbf{r}	$(\mathbf{p} \wedge \mathbf{q})$	$(\mathbf{p} \wedge \mathbf{q}) \vee \mathbf{r}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Q. 5

Use truth tables to show that:
$\neg((\mathrm{p} \vee \neg \mathrm{q}) \vee(\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q}))) \equiv \neg \mathrm{p} \wedge \mathrm{q}$

Answar:

L.H.S

P	q	r	$\neg \mathrm{p}$	fq	$(\mathrm{p} \vee \neg \mathrm{q})$	$\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q})$	$((\mathrm{p} \vee \neg \mathrm{q}) \vee(\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q}))$	$\neg((\mathrm{p} \vee \neg \mathrm{q}) \vee(\mathrm{r} \wedge(\mathrm{p} \vee \neg \mathrm{q})))$
T	T	T	F	F	T	T	T	F
T	T	F	F	F	T	F	T	F
T	F	T	F	T	T	T	T	F
T	F	F	F	T	T	F	T	F
F	T	T	T	F	F	F	F	T
F	T	F	T	F	F	F	F	T
F	F	T	T	T	T	T	T	F
F	F	F	T	T	T	F	T	F

\mathbf{p}	\mathbf{q}	$\neg \mathrm{p}$	$\neg \mathrm{p} \wedge \mathrm{q}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}

R.H.S

Q. 6

Use the laws of logical propositions to prove that:
$(\mathrm{z} \wedge \mathrm{w}) \vee(\neg \mathrm{z} \mathrm{w}) \vee(\mathrm{z} \wedge \neg \mathrm{w}) \equiv \mathrm{z} \vee \mathrm{w}$
State carefully which law you are using at each stage.

Answar:6

$$
(\mathrm{z} \wedge \mathrm{w}) \vee(\neg \mathrm{z} \wedge \mathrm{w}) \vee(\mathrm{z} \wedge \neg \mathrm{w})=(\mathrm{z} \wedge \mathrm{w}) \vee(\mathrm{z} \wedge \neg \mathrm{w}) \vee(\neg \mathrm{z} \wedge \mathrm{w}) \quad(\text { Commutative Law) }
$$

$=(\mathrm{z} \wedge(\mathrm{W} \vee \neg \mathrm{W})) \vee(\neg \mathrm{Z} \wedge \mathrm{W})$
$=(z \wedge T) \vee(\neg z \wedge w)$
$=\mathrm{z} \vee(\neg \mathrm{z} \wedge \mathrm{w})$
$=(\mathrm{z} \vee \neg \mathrm{z}) \wedge(\mathrm{z} \vee \mathrm{w})$
$=T \wedge(\mathrm{z} \vee \mathrm{w})$
$=(\mathrm{z} \vee \mathrm{w}) \wedge \mathrm{T}$
$=\mathrm{z} \mathrm{V} \mathrm{w}$
(Distributive Law)
(Complement Law)
(Identity law)
(Distributive Law)
(Complement Law)
(Commutative Law)
(Identity law)

