ID NO: 16373

Name = Syed Junaid Ali Shah

ID No = 16373

Department = BS Software Engineering (SE)

Paper = Discrete Structure

- * Instructor: Muhammad Abrar Khan
- Examination: Midterm Assignment

Q.1

- Which of the following are propositions?
 a) Buy Premium Bonds! Answare No1: Commands are not Statements (Not a Proposition)
- b) The Apple Macintosh is a 16 bit computer. Answare No²: False
- c) There is a largest even number. Answare No3: True (Proposition)
- d) Why are we here?
 Answare No4: Not a Proposition. It is a Question.
- e) 8 + 7 = 13 Answare No5: False (Not a Proposition)
- a + b = 13
 Answare No6: Not a Statements . (Not a Proposition) . Because the result can be either true or false.

<mark>Q.2</mark>

p is "x < 50"; q is "x > 40".

Write as simply as you can:

Answare No1: X is not < (less than) 50

Answare No2: X is not > (Greater than) 40

1

(d) $p \lor q$ Answare No4: X is < 50 or X is > 40

(e) ¬p ∧ q Answare No5: X is not < (less than) 50 and X is > 40

(f) ¬p ∧¬q Answare No6: X is not < (less than) 50 and X is not > (Greater than) 40

Q.3

In each part of this question a proposition p is defined. Which of the statements that follow the definition correspond to the proposition $\neg p$? (There may be more than one correct answer.) (a): p is "Some people like Maths".

- (a) "Some people dislike Maths"
- (b) "Everybody dislikes Maths"
- (c) "Everybody likes Maths"

Answare No1: Some people dislike Maths.

- b): p is "The answer is either 2 or 3".
 - (a) "Neither 2 nor 3 is the answer"
 - (b) "The answer is not 2 or it is not 3"
 - (c) "The answer is not 2 and it is not 3"

Answare No²: The answer is not 2 or it is not 3.

c): p is "All people in my class are tall and thin".

(a) "Someone in my class is short and fat"

(b) "No-one in my class is tall and thin"

(c) "Someone in my class is short or fat"

Answare No3: No-one in my class is tall and thin.

2

<mark>Q.4</mark>

Construct truth tables for:

a) ¬p∨¬q

Answare No1:

р	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

b) <mark>q∧ (¬p ∨ q)</mark>

Answare No2:

р	q	¬p	$\neg p \lor q$	$q \land (\neg p \lor q)$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	F

c) $p \land (q \lor r)$

Answare No3:

р	q	r	$q \vee r$	$p \land (q \lor r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	F
F	Т	F	Т	F
F	F	Т	Т	F
F	F	F	F	F

3

4

d)	(p∧ q) v	v r							
	Answare No4:								
	р	q	r	(p^ q)	(p∧ q) ∨ r				
	Т	Т	Т	Т	Т				
	Т	Т	F	Т	Т				
	Т	F	Т	F	Т				
	Т	F	F	F	F				
	F	Т	Т	F	Т				
	F	Т	F	F	F				
	F	F	Т	F	Т				
	F	F	F	F	F				

Q.5

Use truth tables to show that:

 $\neg ((p \lor \neg q) \lor (r \land (p \lor \neg q))) \equiv \neg p \land q$

Answar:

L.H.S

Р	q	r	−p	¬q	(p ∨ ¬q)	$r \land (p \lor \neg q)$	$((p \lor \neg q) \lor (r \land (p \lor \neg q))$	$\neg ((p \lor \neg q) \lor (r \land (p \lor \neg q)))$
Т	T	Т	F	F	Т	Т	Т	F
Т	Т	F	F	F	Т	F	Т	F
Т	F	Т	F	Т	Т	Т	Т	F
Т	F	F	F	Т	Т	F	Т	F
F	T	Т	Т	F	F	F	F	Т
F	Т	F	Т	F	F	F	F	Т
F	F	Т	Т	Т	Т	Т	Т	F
F	F	F	Т	Т	Т	F	Т	F

р	q	−p	$\neg p \land q$			
Т	Т	F	F			
Т	Т	F	F			
Т	F	F	F			
Т	F	F	F			
F	Т	Т	Т			
F	Т	Т	Т			
F	F	Т	F			
F	F	Т	F			
	R.H.S					

Q.6

Use the laws of logical propositions to prove that:

 $(z \land w) \lor (\neg z w) \lor (z \land \neg w) \equiv z \lor w$

State carefully which law you are using at each stage.

Answar:6

$$(z \land w) \lor (\neg z \land w) \lor (z \land \neg w) = (z \land w) \lor (z \land \neg w) \lor (\neg z \land w) \quad (Commutative Law)$$

$$= (z \land (w \lor \neg w)) \lor (\neg z \land w) \qquad (Distributive Law)$$

$$= (z \land T) \lor (\neg z \land w) \qquad (Identity law)$$

$$= (z \lor \neg z) \land (z \lor w) \qquad (Distributive Law)$$

$$= T \land (z \lor w) \qquad (Complement Law)$$

$$= (z \lor w) \land T \qquad (Commutative Law)$$

$$= z \lor w \qquad (Identity law)$$