

(03)

ID:14269 NAME: Qazibilal Sessional Assignment Course: Natural Language Processing Instructor: Mam Aasma Khan Date: May 10, 2020

Note: Attempt all Questions.

Question No. 1:

a. Explain Part of Speech Tagging (POS) and explain POS tag ambiguity with two examples.

4 POS Tagging:

It is a process of converting a sentence to forms – list of words, list of tuples (where each tuple is having a form *(word, tag)*). The tag in case of is a part-of-speech tag, and signifies whether the word is a noun, adjective, verb, and so on.

Default tagging: is a basic step for the part-of-speech tagging. It is performed using the Default Tagger class. The Default Tagger class takes 'tag' as a single argument. **NN** is the tag for a singular noun. Default Tagger is most useful when it gets to work with most common part-of-speech tag. That's why a noun tag is recommended.

4 POS tag ambiguity:

Common parts of speech in English are noun, verb, adjective, adverb, etc. The POS tagging problem **is to determine the POS tag for a particular instance of a word**. The main problem with POS tagging is **ambiguity**.

(15)

POS Tag Ambiguity

In English : I bank₁ on the bank₂ on the river bank₃ for my transactions.

 $Bank_1$ is verb, the other two banks are noun

b. State difference between open vs. closed classes.

(02)

ANSWER#1B

4 Open class (CONTENT/LEXICAL)

- Lexical words deal with content and vocabulary.
- > They have concrete meaning that goes beyond their function in a sentence.

Closed class (Grammatical/Function)

- Grammatical words deal with the formation of sentences.
- They have ambiguous meaning and serve to express grammatical relationships with other words within a sentence.
- c. Apply Viterbi Algorithm on the below given bigram and lexical probabilities; (10)

Initial Probabilities		Bigram Probabilities					
			Noun	Verb	Other		
Noun	1\3	Noun	1\4	1\4	0		
Verb	0	Verh	1\4	0	1\4		
Othor	1\3	VCID	± \7	0	1(-		
Other		Other	1\3	0	1\3		

Lexical Probabilities							
	01=time	O2=flies	O3=like	O4=an	O5=arrow		
Noun	1\5	1\5	0	0	1\5		
Verb	1\5	2\5	1\5	0	0		
Other	0	0	1\5	2\5	0		

hi	P1(h1)	P2(h2)	P3(h3)	P4(h4)	P5(h5)
noun	1/3x1/5=1/15	1/5x1/4x1/15=1/300	0x1/150=0	0	1/5x1/4x1/16 875
verb	0	2/5x1/4x1/15=1/150	1/5x1/4x1/150=1/3000	0	0
other	0	0	1/5x1/3x1/150=1/2250	1/3x2/5x1/2250=1/16875	0

Question No. 2:

(05)

Apply Bayesian theorem over the below given string: ^John got many NLP books. ^He found them all very interesting. Where for lexical probabilities assume John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.

POS Tags: ^N V A N N. ^ N V N A R A.

Recording Numbers:

	^	N	V	Α	R	•
^	0	2	0	0	0	0
Ν	0	1	2	1	0	1

V	0	1	0	1	0	0
Α	0	1	0	0	1	1
R	0	0	0	1	0	0
•	1	0	0	0	0	0

Bigram Probability:

	^	N	V	Α	R	•
^	0	1	0	0	0	0
N	0	1/5	2/5	1/5	0	1/5
V	0	1/2	0	1/2	0	0
Α	0	1/3	0	0	1/3	1/3
R	0	0	0	1	0	0
•	1	0	0	0	0	0

Where **lexical probability** is given i.e.

John=0.5, got=0.3, many=0.2, NLP=0.1 and books=0.

Good Luck ©