Department of Electrical Engineering Final Exam Assignment

Date: 27/06/2020

Course Details

Course Title:	Digital Signal Processing	Module:	6th
Instructor:	Sir Pir Meher	Total Marks:	50

Student Details

Name: Student ID: 13678

	(a)	Determine the response $y(n)$, $n \geq 0$, of the system described by the second order difference equation	Marks 7
		$y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)$ To the input $x(n) = (-1)^n u(n)$. And the initial conditions are y (-1) = y (-2) = 0.	CLO 2
Q1.	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2) Determine the causal signal x(n) having the z-transform	CLO 2
	(a)	$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	Marks 6 CLO 2
		(Hint: Take inverse z-transform using partial fraction method)	Marks
	(b)	Evaluate the inverse z- transform using the complex inversion integral $X(z) = \frac{1}{1 - az^{-1}} \qquad z > a $	CLO 2
Q.3	(a)	A two- pole low pass filter has the system response	Marks 6
		$H(z) = \frac{b_o}{(1 - pz^{-1})^2}$ Determine the values of b _o and p such that the frequency response H(ω) satisfies the condition H(0) = 1 and $\left H(\frac{\pi}{4})\right ^2 = \frac{1}{2}$.	CLO 3

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi/2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega=4\pi/9$.	Marks 6 CLO 3
Q 4	(a)	A finite duration sequence of Length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$	Marks 6 CLO 2
		Determine the N- point DFT of this sequence for $N \ge L$	
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 6
		$x_1(n) = \left\{ {\frac{2}{1},1,2,1} \right\}$	CLO 2
		$x_2(n) = \{ \frac{1}{\uparrow}, 2, 3, 4 \}$	2

IQRA NATIONAL UNIVERSITY PESHAWAR

Final Term Digital Signal Processing

Name
Bakht Zaman Gohar

10
13678

Submitted to Engr. Sir Pir Mehr

Department of Electrical Engineering IQRA NATIONAL UNIVERSITY HAYAT ABAD PHASE-II, PESHAWAR

Q13- (Part-a) * Solution :-Y(n) - 49(n-1) + 49(n-2) = X(n) - X(n-1)The characteristic equation is $\lambda^{2} - 4\lambda + 4 = 0$ l=2,2 Hence, 4 (n) = (12"+(2"2" The particular solution is; $\Im_{P}(n) = K(-1)^{n} u(n)$ Substituting this solution into the difference equation, we obtain. $|(-1)_{N}(N) - |((-1)_{N-1}(N-1) + |((-1)_{N-3}(N-2)) =$ $(-1)^{N}u(n)-(-1)^{N-1}u(N-1)$ For N=2, K(1+4+4)=2=> K=3 The total Solution is; $A(x) = \left| (75_x + C^3 N 5_x + \frac{3}{3} (-7)_x \right| A(x)$ From the initial conditions we obtain y(0)=1 y(1) = 2 then, C1+3=1 => (1=7 $2c_1 + 2c_2 - \frac{2}{5} = 2$

with $x(n) = \delta(n)$ we have y(0) = 2 $y(1) - 0.7y(0) = 0 \Rightarrow y(1) = 1.4$ Hence, $c_1 + c_2 = 2$ $\begin{cases} 2 \\ c_1 + 1 \\ \end{cases} = 1.4 = 7 \end{cases}$ $\Rightarrow c_1 + 2 \\ c_2 = 1$ These equations yield $c_1 = \frac{10}{3}, c_2 = -\frac{1}{3}$ $h(n) = \begin{bmatrix} 10 \\ 3 \end{bmatrix} (\frac{1}{2})^n - \frac{1}{3} (\frac{1}{5})^n \end{bmatrix} y(n)$

Mhe 8tep response (8);

$$S(n) = \sum_{k=0}^{\infty} h(n-k)$$

$$= \frac{10}{3} \sum_{k=0}^{\infty} (\frac{1}{2})^{n-k} \frac{1}{3} \sum_{k=0}^{\infty} (\frac{1}{3})^{n-k}$$

$$= \frac{10}{3} (\frac{1}{2})^{n} \sum_{k=0}^{\infty} 2^{k} - \frac{1}{3} (\frac{1}{3})^{n} \sum_{k=0}^{\infty} 5^{1/2}$$

$$= \frac{10}{3} (\frac{1}{2})^{n} \sum_{k=0}^{\infty} 2^{k} - \frac{1}{3} (\frac{1}{3})^{n} \sum_{k=0}^{\infty} 5^{1/2}$$

$$= \frac{10}{3} (\frac{1}{2})^{n} (2^{n+1} - 1) u(n) - \frac{1}{3} (\frac{1}{3})^{n} (8^{n+1} - 1) u(n)$$

93 0- (Part-a)

*Bolutions

$$\chi(z) = \frac{1}{(1+2z^{-1})(1-z^{-1})^2}$$

$$K(z) = \frac{1}{4} \frac{z^{-1}}{(1-z^{-1})^2} + \frac{3}{4} \frac{1}{1-zz^{-1}} + \frac{1}{2} \frac{z^{-1}}{(1-z^{-1})^2}$$

By applying Inverse transform we obtain

$$N(x) = \frac{1}{8}(-1)^{n}u(x) - \frac{3}{8}u(x) + \frac{1}{2}nu(x) = \frac{1}{8}(-1)^{n} + \frac{3}{8}(-1)^{n} + \frac{3}{8$$

Q23- (Part-b)

* Bolwhons

 $x(x) = \frac{1}{2\pi i} \oint_{C} \frac{z^{n-1}}{1-q^{2}} dz = \frac{1}{2\pi i} \oint_{C} \frac{z^{n}}{z-q} dz$

where c is a circle at radius greater than 101. We shall evaluate this integral with 7(2) = 2". We distinguish two cases Case Is-

no poles inside c. The only pole inside

x(n) = f(20) = an n20

Case 26-

Pole at 7=0 which is also inside c.

trus there are contributions from both
poles. For n=-1 we have

 $X(-1) = \frac{1}{2R_1^2} \oint_C \frac{1}{2(2-a)} d2 = \frac{1}{2-a} \Big|_{z=0} + \frac{1}{2} \Big|_{z=a} = 0$

A7 N=-2 We have,

 $X(-2) = \frac{1}{2\pi i} \oint_{C} \frac{1}{2^{2}(2-a)} dz = \frac{d}{dz} \left(\frac{1}{2-a}\right) \left|_{z=0}^{+} \frac{1}{2^{2}}\right|_{z=0}^{z=0}$

By continuing is the same way we can show that x(n)=0 for nco thus, x(n)= anu(n)

Q38- (Part-b)8-Clearly, the Filter must have poles at P2-2 = Yetzing €. Zeros at z=1. € Z=-1 Consequently the system Aunction is $H(z) = G_1(z-1)(z+1)$ $(z-j_1)(z+j_1)$ $=G\frac{2^2-1}{2^2+v^2}$ The gain Factor is determined by evaluating the Frequency response H(W) of the Filter at W= F2 Thus we have H(X2) = G = 1

 $G_1 = \frac{1-v_2}{2}$

The value of v is determined by evaluating H(w) at $w = 4\pi/q$. Thus we have $\left|H(\frac{u\pi}{q})\right|^2 = \frac{(1-v^2)^2}{4} \frac{2-2\cos(8\pi/q)}{2+v^4+2v^2\cos(8\pi/q)} = \frac{1}{2}$

or equivalently,

1.94(1-42)2=1-1.8842+44

The value of $r^2 = 0.7$ satisfies this equation. Therefore, the system Junction for the desired Filter is

 $H(z) = 0.15 \frac{1-z^{-2}}{1+0.7z^{-2}}$

1943 Frequency response is illustrated in below figure.

Q's- (Part-a)

Ale fourier transform of this

Sequence For is;

$$X(w) = \sum_{n=0}^{L-1} x(n)e^{-jwn}$$

$$= \sum_{n=0}^{L-1} e^{-jwn} = \frac{1-e^{-jwL}}{1-e^{-jwL}}$$

$$= \frac{\sin(wL/2)}{\sin(w/2)} e^{iw(L-1)/2}$$
The magnitude ξ Phase of $\chi(w)$ are investigated.

The magnitude & Phase of X(W) are illustrated in below Figure for L=10. The N-Point DFT of X(N) is simply X(W) evaluated at the set of N equally spaced frequencies

 $W_{K} = 2 \times K/N$, K = 0, 1, ..., N-1 Hence $X(K) = \frac{1 - e^{-j} 2 \times K L/N}{1 - e^{-j} 2 \times K/N}$ K = 0, 1, ..., N-1

of the fourier transform for signal.

DI N is selected such that N=L then the DFT becomes

 $\times (1) \left\{ \begin{array}{l} L, & K=0 \\ 0, & K=1,2,....L-1 \end{array} \right.$

Thus there is only Non-Zero value in DFT. This is apparent from observation of x(w), Since x(w) = 0 at the Frequencies WK=2XK/L 1c = 0. The reader should verity that x(n) can be recovered from X(1K) by performing an L-point IDFT.

Q40- (Part-b)

* Bolution: Each sequence consists of four non-zero points. For the purposes of illustrating the operations involved in circular convolution it is desirable to graph each sequence as points on a circle.

Now X3(m) is obtained by circularly convolving X2(n) with X2(n) as Begining with m=0 we have

$$X_3(0) = \sum_{N=0}^{3} X_2(N) X_2((-N))_N$$

X2((-n))4 is simply the sequence X2(n)
Folded & graphed on a circle as
illustrated below.

The product sequence is obtained by multiplying x2(n) with x2(en), point by point. This sequence is also illustrated. Figs-8(b) Finally, we sum the values in the product sequence to obtain

For m=1 we have

$$X_3(1) = \sum_{n=0}^{3} X_1(n) X_2((1-n))_q$$

It is easily revited that $x_2((2-4))_4$ is simply the sequence $x_2((-n))_4$ votated counter clockwise by one unit in time as illustrated in Fig. 5-8(c).

Finally we sum the values in the product sequence to obtain $\chi_3(1)$ Thus, $\chi_3(1)=16$

For m=2 we have

Folded sequence votated by 3times product sequence along with the product sequence $\times 1(n) \times 1(2-n)$ By summing the four terms in the product sequence we obtain,

X3(2) = 14

For m=3 we have

 $X_{3}(3) = \sum_{n=0}^{3} X_{1}(n) X_{2}((3-N))_{4}$

The Folded Sequence $x_2((-n))$ 4 93 now rotated by three units in time to yeild the Product sequence as illustrated in Fig 5.8(e). The sum of the values in the product sequence is $X_3(2) = 16$

we observe that It the computation above is continued beyond m=3, we simply repeat the sequence of four values obtained above. Therefore, the circular convolution of the two sequences $x_1(n) \in x_2(n)$ yields the sequence $x_3(n) = \{14, 16, 14, 16\}$