Department of Electrical Engineering
 Final Exam Assignment
 Date: 27/06/2020

Course Details

Course Title:
Digital Signal Processing
Module:
6th Instructor:

Sir Pir Meher
Total Marks: 50

Student Details

Name:
Bakht Zaman Gohar
Student ID:
13678

Q	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$ To the input $x(n)=(-1)^{n} u(n)$. And the initial conditions are $\mathrm{y}(-1)=\mathrm{y}(-2)=0$.	Marks 7
			$\begin{gathered} \hline \text { CLO } \\ 2 \end{gathered}$
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	$\begin{gathered} \text { Marks } \\ 7 \end{gathered}$
		$y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)$	${ }_{2}^{\text {CLO }}$
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform $x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}$ (Hint: Take inverse z -transform using partial fraction method)	Marks $\mathbf{6}$ CLO 2
	(b)	Evaluate the inverse z- transform using the complex inversion integral $X(z)=\frac{1}{1-a z^{-1}} \quad\|z\|>\|a\|$	Marks 6 $\mathbf{C L O}$ 2
Q. 3	(a)	A two- pole low pass filter has the system response $H(z)=\frac{b_{o}}{\left(1-p z^{-1}\right)^{2}}$ Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the condition $\mathrm{H}(0)=1$ and $\left\|H\left(\frac{\pi}{4}\right)\right\|^{2}=\frac{1}{2}$.	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
			$\underset{3}{\text { CLO }}$

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega=4 \pi / 9$.	Marks 6
			$\begin{gathered} \text { CLO } \\ \hline \end{gathered}$
Q 4	(a)	A finite duration sequence of Length L is given as $x(n)=\left\{\begin{array}{c} 1, \quad 0 \leq n \leq L-1 \\ 0, \quad \text { otherwise } \end{array}\right.$ Determine the N - point DFT of this sequence for $\mathrm{N} \geq \mathrm{L}$	Marks 6
			${ }_{2}^{\text {CLO }}$
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
		$\begin{aligned} & x_{1}(n)=\left\{\begin{array}{l} 2 \\ \uparrow, 1,2,1 \end{array}\right\} \\ & x_{2}(n)=\left\{\begin{array}{l} 1 \\ \uparrow \end{array}, 2,3,4\right\} \end{aligned}$	$\underset{2}{\text { CLO }}$

IQRA NATIONAL UNIVERSITY PESHAWAR

Final Term

Digital Signal Processing
$\frac{\text { Name }}{\text { Bakht Zaman Gohar }} \quad \frac{I D}{13678}$

Submitted to
Engr. Sir Pir Mehr
Department of Electrical Engineering
IQRA NATIONAL UNIVERSITY HAYAT ABAD PHASE-II, PESHAWAR

Q $13^{-}-($Part $-a)$

* Solution:-

$$
y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)
$$

The characteris tic equation is

$$
\begin{gathered}
\lambda^{2}-4 \lambda+4=0 \\
\lambda=2,2 \quad \text { Hence, } \\
y_{n}(n)=C_{1} 2^{n}+c_{2} n 2^{n}
\end{gathered}
$$

The particular solution is:

$$
y_{p}(n)=k(-1)^{n} u(n)
$$

Substituting this solution into the difference equation, we obtain.

$$
\begin{aligned}
& k(-1)^{n} u(n)-4 k(-1)^{n-1} u(n-1)+4 k(-1)^{n-2} u(n-2)= \\
& \qquad(-1)^{n} u(n)-(-1)^{n-1} u(n-1) \\
& \text { For } n=2, k(1+4+4)=2 \Rightarrow k=2 / a
\end{aligned}
$$

The total solution is;

$$
y(n)=\left[c_{1} 2^{n}+c_{2} n 2^{n}+\frac{2}{a}(-1)^{n}\right] u(n)
$$

From the initial conditions we obtain $y(0)=1$, $y(1)=2$ then, $c_{1}+\frac{2}{9}=1$

$$
\begin{array}{r}
\Rightarrow c_{1}=7 / 9 \\
2 c_{1}+2 c_{2}-\frac{2}{9}=2 \\
\Rightarrow c_{2}=\frac{1}{3}
\end{array}
$$

Q13-(Part-b)

* Solution:-

$$
y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)
$$

The characteristic equation is

$$
\begin{aligned}
& \quad \lambda^{2}-0.7 \lambda+0.1=0 \\
& \lambda=\frac{1}{2}, \frac{1}{5} \text {. hence } \\
& \\
& \quad y_{n}(n)=0.7 y(0)= \\
& y_{n}(n)=c_{1} \frac{1}{2}+c_{2} \frac{1}{5}
\end{aligned}
$$

with $x(n)=\delta(n)$ we have

$$
\begin{gathered}
y(0)=2 \\
y(1)-0.7 y(0)=0 \Rightarrow y(1)=1.4 \\
\text { Hence, } c_{1}+c_{2}=2 \\
1 / 2 c_{1}+1 / 5=1.4=7 / 5 \\
\Rightarrow c_{1}+2 / 5 c_{2}=14 / 5
\end{gathered}
$$

These equations yield

$$
\begin{aligned}
& c_{1}=\frac{10}{3}, c_{2}=-\frac{4}{3} \\
& h(n)=\left[10 / 3(1 / 2)^{n}-\frac{4}{3}(1 / 5)^{n}\right] u(n)
\end{aligned}
$$

The step response is;

$$
\begin{aligned}
& S(n)=\sum_{k=0}^{n} h(n-k) \\
&=\frac{10}{3} \sum_{k=0}^{n}(1 / 2)^{n-k}-\frac{1}{3} \sum_{k=0}^{n}\left(\frac{1}{5}\right)^{n-k} \\
&=\frac{10}{3}(1 / 2)^{n} \sum_{k=0}^{n} 2^{k}-\frac{4}{3}(1 / 5)^{n} \sum_{k=0}^{n} 5^{k} \\
&=\frac{10}{3}\left(\frac{1}{2}\left(2^{n+1}-1\right) u(n)-\frac{1}{3}\left(\frac{1}{5}\left(3^{n+1}-1\right) u(n)\right.\right.
\end{aligned}
$$

Q $2:-($ Part $-a)$
*Solution:-

$$
\begin{aligned}
x(z)= & \frac{1}{\left(1+2 z^{-1}\right)\left(1-z^{-1}\right)^{2}} \\
x(z)= & \frac{1}{4} \frac{z^{-1}}{\left(1-2 z^{-1}\right)^{2}}+\frac{3}{4} \frac{1}{1-2 z^{-1}} \\
& +\frac{1}{2} \frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}
\end{aligned}
$$

By applying inverse transform we obtain

$$
\begin{aligned}
x(n)= & \frac{1}{8}(-1)^{n} u(n)-\frac{3}{8} u(n)+1 / 2 n u(n)= \\
& {\left[\frac{1}{8}(-1)^{n}+\frac{3}{8}+n / 2\right] u(n) }
\end{aligned}
$$

Q2:-(Part-b)
A Solution:-

$$
x(n)=\frac{1}{2 \pi j} \oint_{c} \frac{z^{n-1}}{1-a z^{-1}} d z=\frac{1}{2 \pi j} \oint_{c} \frac{z^{n} d z}{z-c}
$$

where c is a circle at radius greater than $|a|$. We shall evaluate this integral with $7(z)=z^{n}$. We distinguish two cases Case 1:-
$====07 \quad n \geq 0$ has only zeros g hence no poles inside c. The only pole inside c is $z=a$. Hence

$$
x(n)=7\left(z_{0}\right)=a^{n} \quad n \geq 0
$$

Case 2:-

$$
\text { Ea } 33
$$

Af $n<0, f(z)=z^{n}$ has $n^{\text {th }}$ order pole at $z=0$ which is al to inside e. Thus there are contributions from both poles. For $n=-1$ we have

$$
x(-1)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z(z-a)} d z=\left.\frac{1}{z-a}\right|_{z=0}+\left.\frac{1}{z^{0}}\right|_{z=a}=0
$$

$\Delta 7 x=-2$ we have,

$$
x(-2)=\frac{1}{2 \pi j} \oint_{c} \frac{1}{z^{2}(z-a)} d z=\left.\frac{d}{d z}\left(\frac{1}{z-a}\right)\right|_{z=0}+1 /\left.z^{2}\right|_{z=a}=0
$$

By continuing is the same way we can show that $x(n)=0$ for $n<0$ thus, $x(n)=a^{n} u(n)$

Q 3:- (Part-a)

* Solution:-

At $\omega=0$ we have

$$
H(0)=\frac{b_{0}}{(1-p)_{1}^{2}}=1
$$

Hence
At $\omega=\pi / 4$

$$
\begin{aligned}
& H(\pi / 4)=\frac{(1-P)^{2}}{\left(1-P e^{-j \pi / 4)^{2}}\right.} \\
&= \frac{(1-P)^{2}}{\left(1-P \cos (\pi / 4)+(j P \sin (\pi / 4))^{2}\right.} \\
&= \frac{(1-P)^{2}}{(1-P / \sqrt{2} j P / \sqrt{2})^{2}}
\end{aligned}
$$

$$
\sqrt{2}(1-P)^{2}=1+P^{2}-\sqrt{2} P
$$

The value of $P=0.32$ satisfies this equation consequently, the system Function for the desired filter is

$$
H(z)=\frac{0.46}{(1-0.32 z-1)^{2}}
$$

The same principles can be applied for the design of bandpass filters.

Q 3:- $($ Part $-b):-$

* Solution ${ }^{\circ}$

Clearly, the filter must have poles at

$$
P_{102}=r e^{i z j \pi / 2}
$$

\&. zeros at $z=1, \& z=-1$
consequently the system function is

$$
\begin{aligned}
H(z) & =G \frac{(z-1)(z+1)}{(z-j r)(z+j r)} \\
& =G \frac{z^{2}-1}{z^{2}+r^{2}}
\end{aligned}
$$

The gain factor is determined by evaluating the Frequency response $H(\omega)$ of the Filter at $\omega=\pi / 2$
Thus we have

$$
\begin{gathered}
H(\pi / 2)=G \frac{2}{1-\gamma^{2}}=1 \\
G=\frac{1-r^{2}}{2}
\end{gathered}
$$

The value of r is determined by evaluating $H(w)$ at $\omega=4 \pi / a$. Thus we have

$$
\left|H\left(\frac{4 \pi}{9}\right)\right|^{2}=\frac{\left(1-r^{2}\right)^{2}}{4} \frac{2-2 \cos (8 \pi / 9)}{1+r^{4}+2 r^{2} \cos (8 \pi / 9)}=1 / 2
$$

or equivalently,

$$
1.94\left(1-r^{2}\right)^{2}=1-1.88 r^{2}+r^{4}
$$

The value of $r^{2}=0.7$ satisfies this equation. Therefore, the system function For the desired filter is

$$
H(z)=0.15 \frac{1-z^{-2}}{1+0.7 z^{-2}}
$$

Its Frequency response is illustrated in below figure.

Q4:- (Part-a)

* Solution:-

She fourier transform of this
sequence for is;

$$
\begin{aligned}
& x(\omega)=\sum_{n=0}^{L-1} x(n) e^{-j \omega n} \\
& =\sum_{n=0}^{L-1} e^{-j \omega n}=\frac{1-e^{-j \omega L}}{1-e^{-j \omega}} \\
& =\frac{\sin (\omega L / 2)}{\sin (\omega / 2)} e^{-j \omega(L-1) / 2}
\end{aligned}
$$

The magnitude \sum phase of $x(w)$ are illustrated in below Figure for $L=10$. The N-point DFT of $x(n)$ is simply $x(\omega)$ evaluated at the set of N equally spaced frequencies

$$
w_{k}=2 \pi k</ N, k<=0,1, \ldots \ldots . N-1 \text { Hence }
$$

$$
\begin{aligned}
& x(k)=\frac{1-e^{-j 2 K K L / N}}{1-e^{-j 2 \pi K / N}} \quad k=0,1, \ldots N-1 \\
& x(\omega) t \\
& =\frac{\sin (\pi K L / N)}{\sin (\pi K / N)} e^{-j \pi k(L-1) \mid N}
\end{aligned}
$$

-x on thaguitude E Phase characteristics of the Fourier transform for signal.
$07 N$ is selected such that $N=L$ then the DFT becomes

$$
x(k) \begin{cases}L, & k=0 \\ 0, & k=1,2, \ldots \ldots L-1\end{cases}
$$

Thus there is only Non-zero value in DFT. This is apparent from observation $\delta x(\omega)$, Since $x(\omega)=0$ at the frequencies $\omega k<=2 \pi \mathrm{k} / \mathrm{L}$ $k \neq 0$. The reader should verity that $k(n)$ can be recovered from $x(k)$ by performing an L-point IDFT.

Qu:- (P art-b)

太 Solution:- Each sequence consists St four non-zero paints. For the purposes At illustrating the operations involved in circular convolution it is desirable to graph each sequence as points on a circle.

Now $x_{3}(m)$ is obtained. by circularly convolving $x_{1}(n)$ with $x_{2}(n)$ as Beginning with $m=0$ we have

$$
x_{3}(0)=\sum_{n=0}^{3} x_{1}(n) x_{2}((-n))_{N}
$$

$x_{2}((-n))_{4}$ is simply the sequence $x_{2}(n)$ Folded $\{$ graphed on a circle as
illustrated below.
The product sequence is obtained by multiplying $x_{2}(n)$ with $x_{2}((-n))$, point by point. This sequence is also illustrated. FigS-8(b) Finally, we sum the values in the product sequence to obtain

$$
k_{3}(0)=14
$$

For $m=1$ we have

$$
x_{3}(1)=\sum_{n=0}^{3} x_{1}(n) x_{2}((1-n))_{4}
$$

It is easily verified that $x_{2}((1-4))_{4}$ is simply the sequence $x_{2}((-n))_{4}$ rotated counter clockwise by one unit in time as illustrated in Fig. So 8(c).
Finally we sum the values in the product sequence to obtain $x_{3}(1)$
Thus, $\quad x_{3}(1)=16$
For $m=2$ we have

$$
x_{3}(2)=\sum_{n=0}^{3} x_{1}(n) x_{2}((2-n))_{4}
$$

Now $x_{2}((2-n))_{4}$ is the Folded sequence in Fig (b) rotated two units sf time in the counter clockwise direction. The resultant sequence is illustrated in Fig. $5.8(d)$

Folded sequence

Product sequence

Folded sequence rotated by two times

Folded sequence rotated by times Product sequence Along with the product sequence $x_{1}(n) z_{2}((2-n))_{4}$
By summing the four terms in the product sequence we obtain,

$$
x_{3}(2)=14
$$

For $m=3$ we have

$$
x_{3}(3)=\sum_{n=0}^{3} x_{1}(n) x_{2}((3-n))_{4}
$$

The Folded sequence $x_{2}(l-n)$) 4 is now rotated by three units in time to yeild the product sequence as illustrated in $F_{i} s$ osee). The sum of the values in the product sequence is

$$
x_{3}(3)=16
$$

we observe that ？the computation above is continued beyond $m=3$ ，we simply repeat the sequence of four values obtained above． Therefore，the circular convolution of the two sequences $x_{1}(n) \& x_{2}(n)$ yields the sequence

$$
\begin{aligned}
& x_{3}(n)=\left\{\frac{14}{\uparrow}, 16,14,16\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 文三交 } \\
& \stackrel{\text { 㐫 }}{=}
\end{aligned}
$$

