
NAME HAIDER ZAMAN

ID 14402

FINAL PAPER

TOTAL MARKS 50

Question no.1)

ELEMENTS OF USE CASE DIAGRAME

The elements of use case diagram are as follow

 Actors

 System boundary

 Include

 Extend

ACTORS:

An actor portrays any entity (or entities) that perform certain roles in a given

system. The different roles the actor represents are the actual business roles of

users in a given system.

SYSTEM BOUNDARY:

A system boundary defines the scope of what a system will be. A system cannot

have infinite functionality.

Include:

When a use case is depicted as using the functionality of another use case in a

diagram, this relationship between the use cases is named as

an include relationship.

EXTEND:

In an extend relationship between two use cases, the child use case adds to the

existing functionality and characteristics of the parent use case.

QUESTION NO.6)

SINGLETON:

the singleton pattern is a software design pattern that restricts the instantiation of a

class to one single instance.

Public Singleton

{

 Private static singleton uniqe;

 Private singleton() {

 Public static singleton getInstance() {

 If (unique == null) {

 Unique=new Singleton();

}

Return unique;

}

}

SINGLETON

STATIC UNIQUE Instance

STATIC get Instance()

QUESTION NO.8

Observe Partner:

The Observer pattern defines a one-to-many dependency between objects so that

one objects changes state, all of its dependents are notified and udated

automatically.

 subject

Registered observer()

Remove observer()

Notify observer()

Observer

Update()

 Concreate subject

Registered observer()

Remover observer()

Notify observer()

 getState()

 setState()

Question no.5

Question no.4:

Modeling consists of building an abstraction of reality.

Abstractions are simplifications because:

They ignore irrelevant details and

They only represent the relevant details.

Concreate observer

Update()

What is relevant or irrelevant depends on the purpose of the model.

Question no.2

Fork node is a control node that has one incoming edge and multiple outgoing

edges and is used to split incoming flow into multiple concurrent flows. Fork

nodes are introduced to support parallelism in activities.

The notation for a fork node is a line segment with a single activity edge entering

it, and two or more edges leaving it.

Fork node with a single activity edge entering it, and three edges leaving it.

The functionality of join node and fork node can be combined by using the same

node symbol. This case maps to a model containing a join node with all the

incoming edges shown in the diagram and one outgoing edge to a fork node that

has all the outgoing edges shown in the diagram.

Question no.7

Our intent is to describe the most important ways in which software systems can

offer privacy to their stakeholders. We express our privacy patterns as class

diagrams in the UML (Universal Modelling Language), because this is a

commonly-used language for expressing the high-level architecture of an object-

oriented system. In this initial set of privacy patterns, we sketch how each of

Westin's four states of privacy can be implemented in a software system.

