

Iqra National University, Peshawar Department of Electrical Engineering

Assignment Date:20/4/2020

Course Code:	MTH 1	02		Course	e Title:	Calculus and analytic geometry
Prerequisite:				Instru	ctor:	HIMAYATULLAH
Module:	3	Program:	BEE	Total Marks:	30	

		-	-
Q1.	(a)	. Identify $\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h}$	Marks 5 CLO1 C1
	(b)		Marks 5
		Find the first order derivatives of the function $y = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x} + 1\right)$	CLO1 C1
Q2	(a)	. A dynamite blast blows up a heavy rock with launch velocity of 160m/sec reaches a hight of $s = 160t - 16t^2$ ft after t sec,	Marks 10 CLO2 C2
		 (i) How high does the rock go (ii) Find the velocity and speed of the rock when it is 256 ft above the ground on the way up 	
		and down	
		(iii) find the acceleration of the rock at time 5sec	
Q3	(a)	Does the curve $y = x^4 - 2x^2 + 2$ have nay horizontal tangent if so where ?	Marks 10 CLO1
			C1
·			1

NAME: MUHAMMAD IDREES KHAN

ID: 16431

SEMESTER: 2ND

DEPTT. BEE

INSTRUCTOR: SIR HIMAYAT ULLAH

QNO. 1(9) Solution Linit 12+h - 52 (%) h-20 h 50 $= \lim_{h \to 0} \frac{1}{2+h-j^2} \times \frac{\sqrt{2+h+j^2}}{\sqrt{j^2+h+j^2}}$ $= \frac{4}{10} \frac{1}{(12+5-52)(12+5+12)} \frac{1}{(16)(12+5+52)} \frac{1}{(16)(12+5+52)}$ = dt (12+5) -(12) (h) (J2+h+ J2) - Cinit Lok-t h=> (W) (12+15 + 12) fait _ 1-20 J2+6-1/2 = dugit Putting limit 5 12+0+12 12+12 252 Khizra Paper Products Checked By:......Parents:.....Excellent Good Need Improv

QNO. 1 (b) Solution :- $\begin{pmatrix} x+1 \\ x \end{pmatrix} \begin{pmatrix} x-1 \\ x \end{pmatrix}$ = (x+x') (x - x'+1) ¥= Taing levivation d'y dr $= (x + x^{-1}) dy (x - x + i)$ - x +1 1+ x) (x - x+1) dy x+ 1/ = 1+ 1 + 1) x x-x+ 2 $(n^2 + 1)$ 1× - 1+× (n+1 x 21 x+1) (x+1) 1+1) × 3 23 x+x+x+ + 1+12-2 - x × 3 24+2 - n x 13 2x + x - x +2 23 Jus . izra Paper Products Parents

2 Jun Date: __/_/-Damfwfff QNO. 2 (9) Solution . $\frac{dight}{dight} = S = 160t - 16t^{2}gt$ $\frac{dight}{Velocity} = v = 160ms'$ 100 How high does The socle 90. (6) v= 2, when thight is 256gt 100 a= 2, when Tt = 55ec(D) Let we Talle Time = 2 sec V=S $160 = 160t - 16t^{2}$ 160 = 160(1) - 16(1) 160 = 160 - 16 160 = 144 t. t = 144160 t = 0.95ra Paper Products

ecked By:.....Parents:..... Excellent Cood Duration

V= 5 (0) $160 = \frac{S}{29}$ $\frac{164 \times 0.9 = 5}{19}$ $\overline{5} = 14467$ bor finding velocity v=3 v=5 [$s=256\beta t$] t(6) $V = \frac{256}{0.9}$ V = 284.4ms Bor Zinding acceleration a=? It = 5 sec $a \ge \frac{v}{F}$ a = 160 $a = 32 \text{ ms}^2$ Ans. Khizra Paper Products

Days Popps	Date:
PNO-3	
Solution:- y = x	-2 + +
Taking daris	
dy = dr	4x-4x
let put dy =	
dx dx	
$o = 4x^3 - 4$	х
$\frac{4}{1} = \frac{4}{1}$	
$\frac{x^2 = 2}{\sqrt{x^2 = j}}$	
$\int \mathcal{X} = \frac{1}{2}$	
	Eargent on curve.
tand = m	slip = m = dy $d\eta$
$\mathcal{O} = t_{ap}^{-\prime}(m)$	
0 = tañ'(0)	
0=0	
les it has he	rizontal Tangent.)
Khizra Paper Products	Ques.