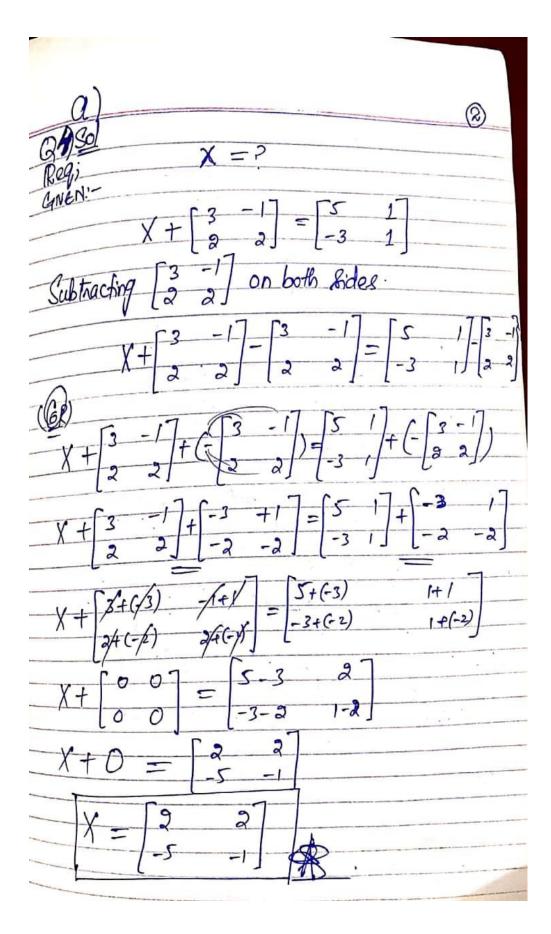


CALCULUS AND ANALYTICAL GEOMETRY

Examination: Final Paper

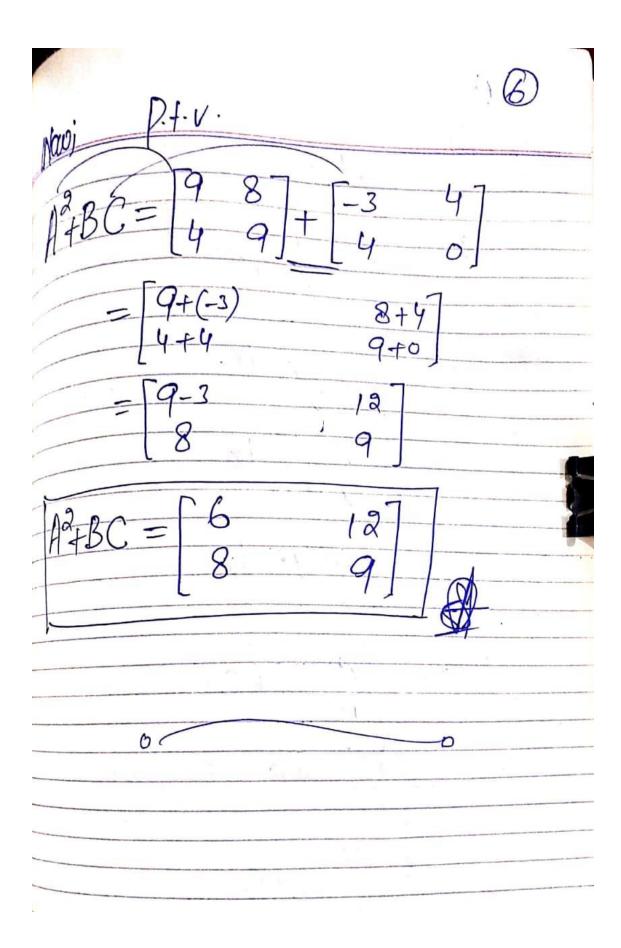

JUNE 27, 2020

Submit By: Saifullah

Submitted To: Muhammad Abrar Khan

(1)

Saif ullah Name: -BS (CS) Class: -Roll # :-16926 Final Term. Instructor: -Muhammad Abrar Khan 27/06/2020 Dated: -

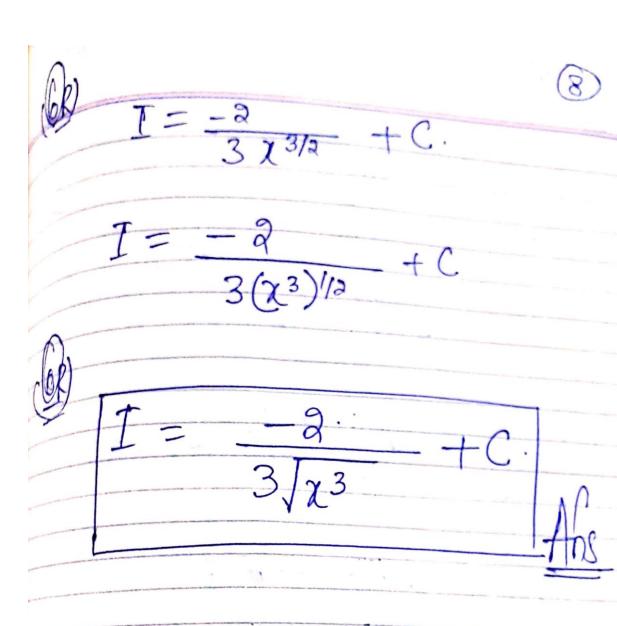

Men:
$$X = ?$$

We have $X = ?$

In the first $X = ?$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x] = [x - x]$
 $X + [x - x]$

Reg;
$$A^2 + BC = ?$$

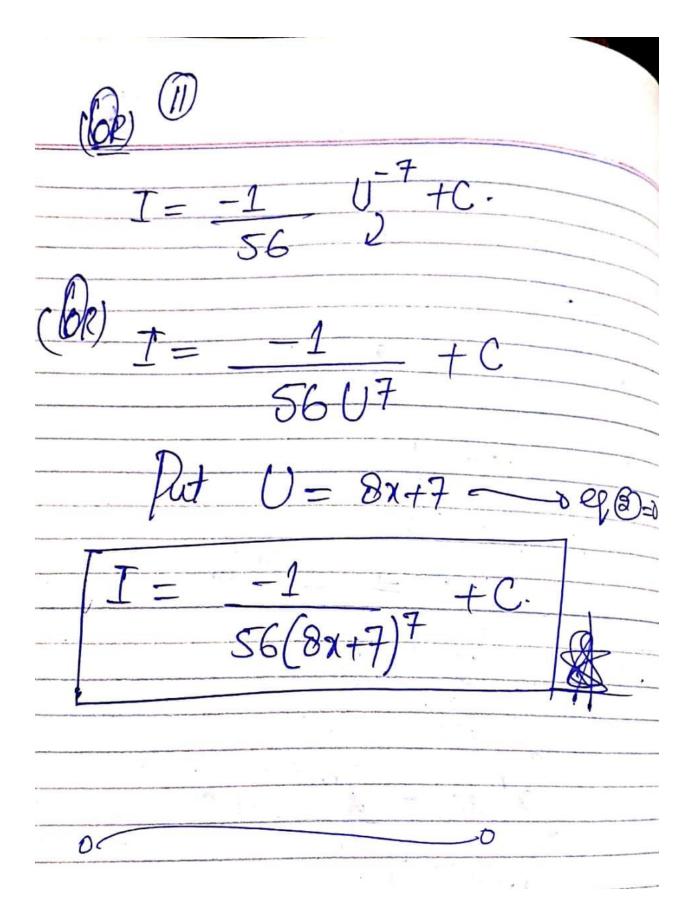
1st $A^2 = ?$
 $A^2 = A \times A = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 4 \\ 2 &$

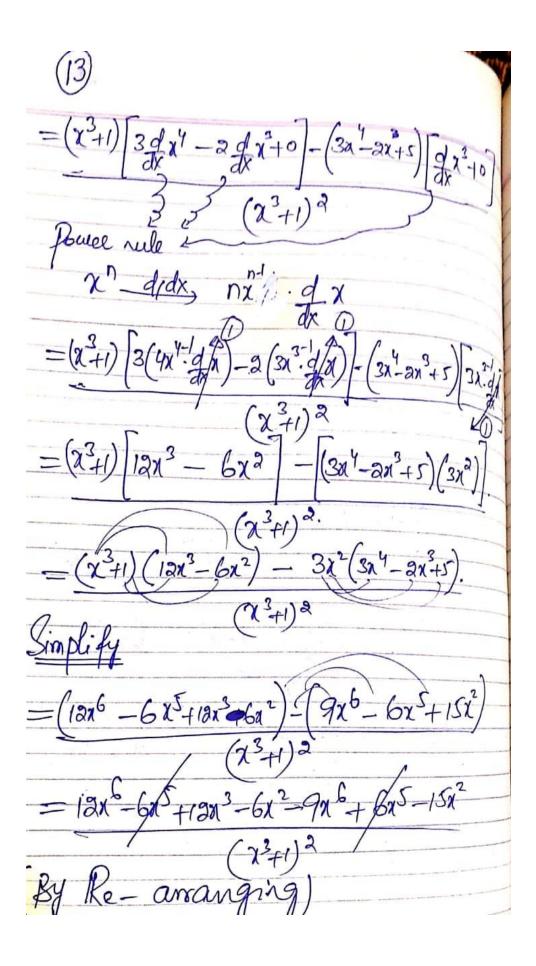

Page Integral = I =?

GNEN: let
$$I = \int \frac{1}{\sqrt{x^5}} dx$$

By $I = \int \frac{1}{\sqrt{x^5}} dx$

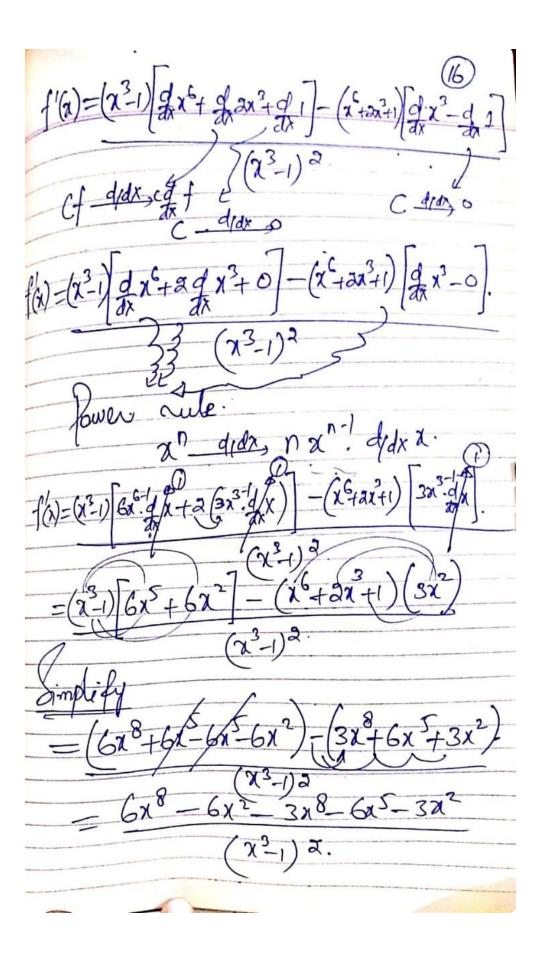
$$= \int \frac{1}{\sqrt{x^5/a}} dx$$

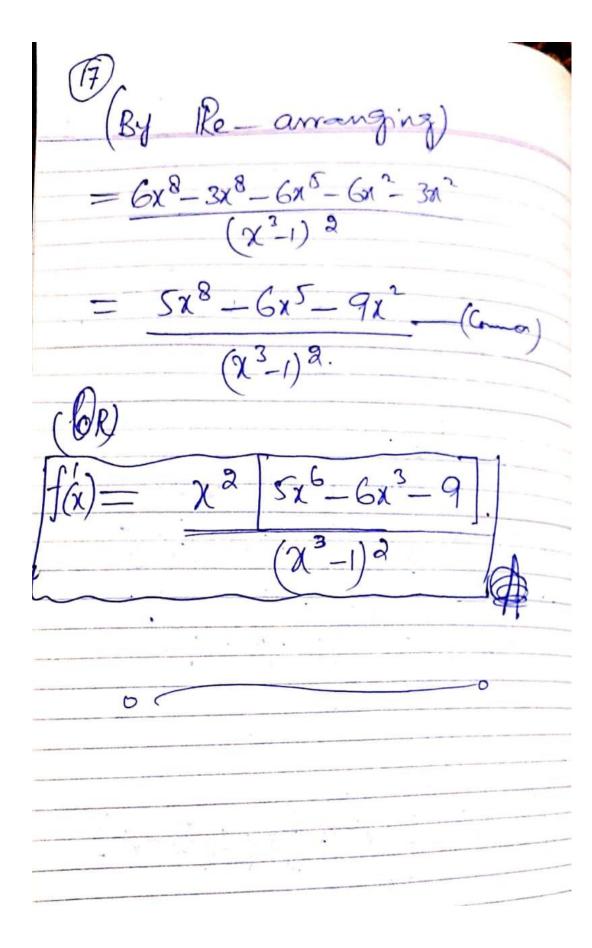

$$= \int \frac{1}{$$

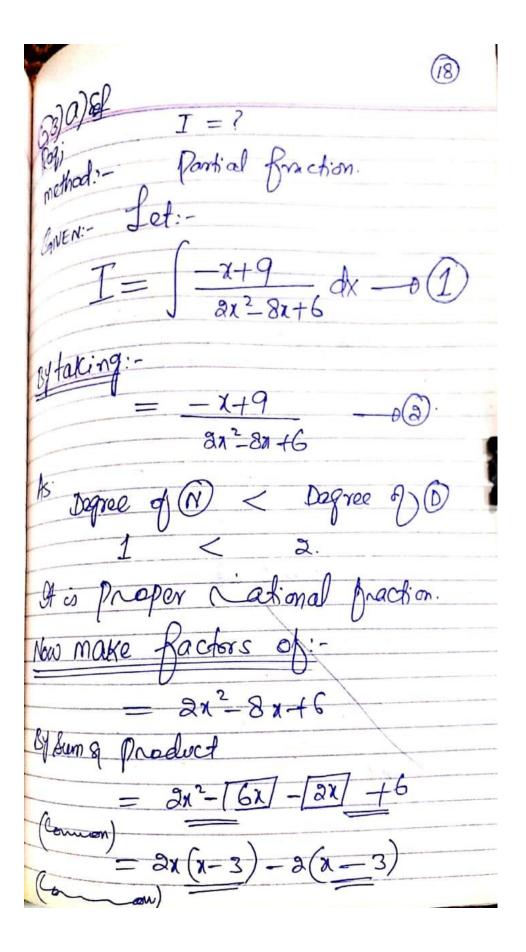

(b)sp (9) Rag; GNEN:-Integral = I =? Ret let

$$\frac{dv}{8} = dx - oG$$

$$\frac{dv}{8} = cf dx$$




la $\frac{d}{dx}f(x)=?$ $f(\alpha) = \frac{3\chi^4 - 2\chi^3 + 5}{\chi^3 + 1}$ Differentiating w.r.t x 0.65) $\frac{3x^4-2x^3+5}{x^3+1}$ Quotent Rule. - (3x -2x +5) · of (x +1 (23+1) 4 $Cf da c d f o (x^2 + 1)^2$



 $\frac{12n^{5}-9x^{6}+12x^{3}-6x^{2}-15x^{2}}{(x^{3}+1)^{2}}$ 3x + 12x3 - 21x2 0 (

 $\frac{d}{dx} f(x) = ?$ $f(x) = \frac{(\chi^3 + 1)^2}{\chi^3 - 1}$ (a+b) = a+b+dab $f(x) = \frac{(x^3)^2 + (1)^2 + 2(x^3)(1)}{x^3 - 1}$ $\frac{\chi^{5}+2\chi^{3}+1}{\chi^{2}-1}$ w.r.t & o.b.s votient Rule

$$= (\chi - 3)(2\chi - 2) \quad (connon)$$

$$= \left[2(\chi - 3)(\chi - 1) \right]$$

$$Now; (2) = 0 \quad be \quad comes$$

$$\frac{-\chi + 9}{2\chi^2 - 8\chi + 6} = \frac{-\chi + 9}{2(\chi - 3)(\chi - 1)} = \frac{1}{2} \left[\frac{-\chi + 9}{(\chi - 3)(\chi - 1)} \right]$$

$$|et|$$

$$= \chi + 9 = A + B - 9$$

$$(\chi - 3)(\chi - 1) \quad o.b.s. = 0$$

$$-\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 3) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

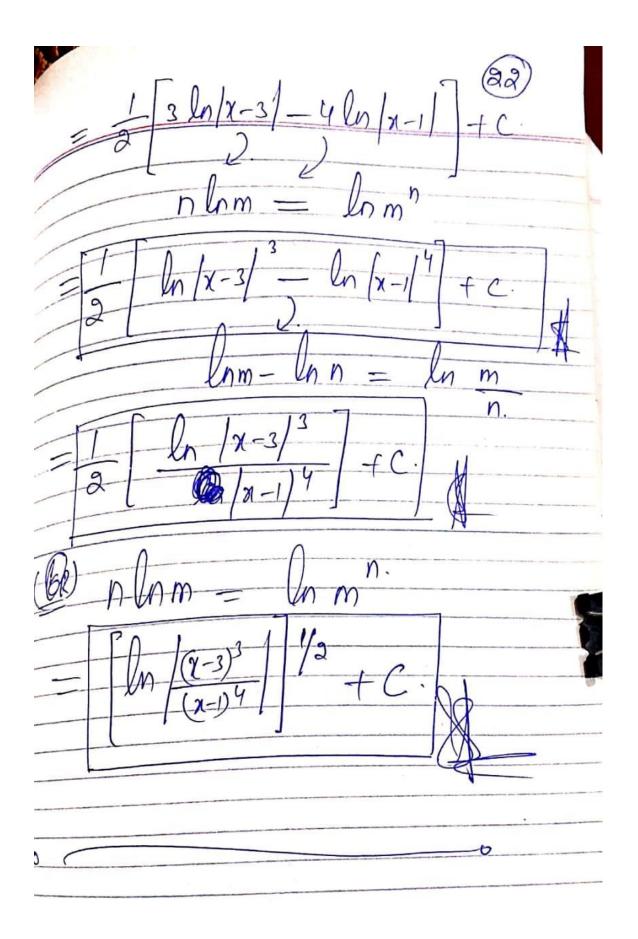
$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

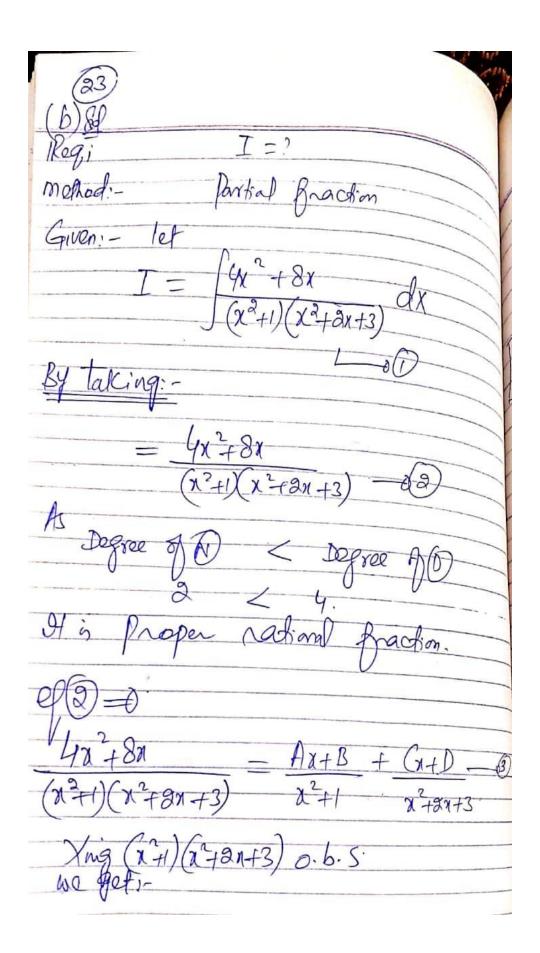
$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

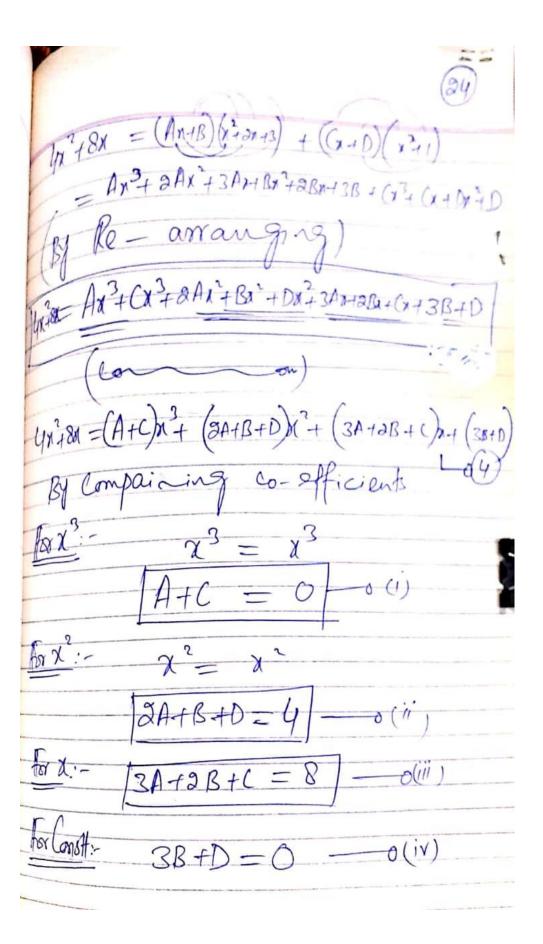
$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$

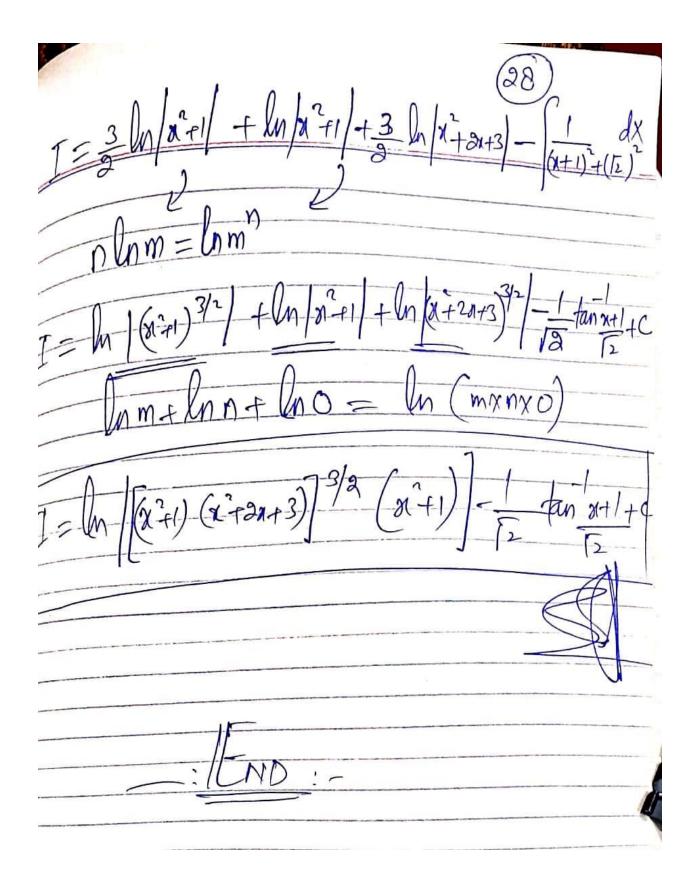

$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$


$$|\chi + 9 = A(\chi - 1) + B(\chi - 1) = 0$$


$$|\chi + 9 = A(\chi - 1)$$

$$A = 60$$

$$A$$



Solublinating (ii)
$$8(iv)$$
 $3A + B + 8 = 4$
 $3A - AB = 4$
 $A - B = A/A$
 $A - B = A/A$
 $A - B = A/A$
 $A - B = A = A$
 $A - A = B = B$
 $A - B - B = B$
 $A - B$

$$D = 4 - \frac{7}{3}$$

$$D = 4 - \frac{7}{3}$$

$$D = -3 \cdot \frac{7}$$

