Assignment
Date:20/4/2020

Course Code: Prerequisite:	MTH 102				Course Title:		Calculus and analytic geometry
					Instru		HIMAYATULLAH
Module:	3	Program:	BEE		Marks:	30	

$$
\begin{aligned}
& \operatorname{limit}_{h \rightarrow 0} \frac{1}{\sqrt{2+h}+\sqrt{2}} \\
& \operatorname{limit}_{h \rightarrow 0}=\frac{1}{\sqrt{2+0}+\sqrt{2}} \\
& =\frac{1}{\sqrt{2}+\sqrt{2}} \\
& =\frac{1}{2 \sqrt{2}} \text { Ans }
\end{aligned}
$$

Ancesster
11743

Part B
Find the first order Derivatives of the Following Function.

$$
y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)
$$

Sol:

$$
y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)
$$

$$
\begin{aligned}
& \text { Taking Derivative. } \\
& \frac{d y}{d x}=\left(x+x^{-1}\right) \frac{d}{d x}\left(x-x^{-1}+1\right)+\left(x-x^{-1}+1\right) \frac{d}{d x}\left(x+x^{-1}\right) \\
& =\left(x+x^{-1}\right)\left(1+x^{-2}\right)+\left(x-x^{-1}\right)+\left(1-x^{-2}\right)\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x^{2}}\right)+ \\
& \left(x-\frac{1}{x}\right)\left(1-\frac{1}{x^{2}}\right)
\end{aligned}
$$

$$
=x+x \frac{1}{x^{2}}+\frac{1}{x}+\frac{1}{x^{3}}+x-x \frac{1}{x^{2}}-\frac{11}{x}+\frac{11}{x^{3}}+\frac{1}{x^{2}}
$$

QNo2
A dynamite blast blows up a heavy rack with launch velocity of $160 \mathrm{~m} / \mathrm{sec}$ reaches a hight of $\mathrm{S}=160 \mathrm{t}-$

$$
16 t^{2} \mathrm{ft} \text { after } t \sec ?
$$

i) How high does the rock go.
ii) Find the velocity ξ speed of the rock when it is $2567 t$ above the ground on he way up ξ down.
(ii) find the acceleration of the rock at time sec.

Sol:-

(1) $S=160 t-16 t^{2}$.

$$
\begin{aligned}
V(2) & =160-30 \times 0 \\
& =160-64 \\
& =96 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{d s}{d t}=v \\
& S=2 S 6=160 t-16 t^{2} \\
& 16 t^{2}-160 t+256=0 \\
& 16\left(t^{2}-10 t+16\right)=0 \\
& t^{2}-10 t+16=0 \\
& t^{2}-8 t-2 t+16=0 \\
& t(t-8)-2(t-8)=0 \\
& (t-2)(t-8)=0 \\
& t=2,8
\end{aligned}
$$

iii) Find the acceleration of the rock at time see?

$$
\begin{aligned}
& S^{\prime}(t)=160-50 t \\
& S^{\prime \prime}(t)=-50 \mathrm{ft} 1 \mathrm{sec}^{2}
\end{aligned}
$$

$$
11743
$$

Qu
Does The curve $y=x^{4}-2 x^{2}+2$ have any hagizontal tangent if so where.

$$
y=x^{4}-2 x^{2}+2 .
$$

Sol:
Taking Derivative.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[x^{4}-2 x^{2}+2\right] \\
& =\frac{d}{d x}\left(x^{4}\right)-2 \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2) \\
& \frac{d y}{d x}=4 x^{3}-4 x+0 \\
& \frac{d y}{d x}=4 x^{3}-4 x
\end{aligned}
$$

17 The congent is horizontal then $\frac{d y}{d x}=0$.
So,

$$
\begin{aligned}
& 4 x^{3}-4 x=0 \\
& 4 x\left(x^{2}-1\right)=0 \\
& 4 x=0, x^{2}-1=0
\end{aligned}
$$

So

$$
x=0,1,-1
$$

The corresponding point in $y=x^{4}-2 x^{2}+2$ are given below.

For

$$
\begin{aligned}
x & =0 \quad y=0-0+2 \\
& \Rightarrow y=2 .
\end{aligned}
$$

For $x=1$

$$
\begin{aligned}
& y=1-2(1)+2 . \\
\Rightarrow & y=1
\end{aligned}
$$

For $x=-1$

$$
\begin{aligned}
& y=-1-2+2 \\
& y=1
\end{aligned}
$$

Hence $(0,2)(1,1) \&(-1,1)$ Ans

