

Iqra National University, Peshawar Department of Electrical Engineering

Assignment Date:20/4/2020

Course Code:	MTH 1	02		Cours	e Title:	Calculus and analytic geometry
Prerequisite:				Instru	ctor:	HIMAYATULLAH
Module:	3	Program:	BEE	Total Marks:	30	

. **Identify** $\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h}$ Q1. (a) Marks 5 CLO1 C1 (b) Marks 5 Find the first order derivatives of the function $y = \left(x + \frac{1}{x}\right)\left(x - \frac{1}{x} + 1\right)$ CLO1 C1 . A dynamite blast blows up a heavy rock with launch velocity of 160m/sec reaches a Q2 Marks 10 hight of $s = 160t - 16t^2$ ft after t sec, CLO2 C2 How high does the rock go (i) Find the velocity and speed of the rock when it is 256 ft above the ground (ii) on the way up and down find the acceleration of the rock at time 5sec (iii) Does the curve $y = x^4 - 2x^2 + 2$ have nay horizontal tangent if so where ? Q3 (a) Marks CLO1 C1

CO PERSONAL CONTRACTOR OF THE PROPERTY OF THE
NAME Anees Shex ID 11743
Part (A) Identity Const N2+h-ND h->0 h
Soli lint 12+h - 12 h-20 h
Cint h-20 \[\sqrt{2+0} - \sqrt{2} \\ h \]
$xing \in \div by$ $\sqrt{2+h} + \sqrt{2}.$
h>0 12+h - ND x N2+h + ND.
Limt $(\sqrt{2+h})^2 - (\sqrt{2})^2$ $h \rightarrow 0$ $h (\sqrt{2+h} + \sqrt{2})$
$\begin{array}{ccc} \text{Limit} & \underline{\partial + h} - \underline{\partial} \\ h & \overline{\lambda} & \overline{\partial} & h & \overline{\partial} & \overline{\partial} \end{array}$
Cimit h $\lambda \to 0' h(\sqrt{2}+h)+\sqrt{2}.$

Cimit 1 Anees Sher 11743

Limit
$$h \rightarrow 0$$
 $\sqrt{3+h} + \sqrt{2}$.

Limit $h \rightarrow 0$ $= \frac{1}{\sqrt{3+0} + \sqrt{2}}$.

Past B Find The first order Derivatives of the following function.
$$y = (n + \frac{1}{x})(x - \frac{1}{x} + 1)$$

Sol:
$$y = (x + \frac{1}{x})(x - \frac{1}{x} + 1)$$

Taking Desivative. $\frac{dy}{dx} = (x + n') \frac{d}{dn} (x - x' + 1) + (x - x' + 1) \frac{d}{dn} (x + x')$

$$= (x + x^{-1}) (1 + x^{2}) + (x - x^{-1}) + (1 - x^{-2}) (x + \frac{1}{x}) (1 + \frac{1}{x^{2}}) + (x - \frac{1}{x}) (1 - \frac{1}{x^{2}})$$

QNOD

A dynamite blast blows up a heavy sock. with launch velocity of 160 m/sec reaches a hight of S=160t-16th ft after t sec?

i) How high does The rock go

ii) Find The velocity & speed of the sock when it is a 56 ft above the ground on the way up & down.

iii) Find the acceleration of the sock at time sec.

Sol1-

S= 160t-16t2.

160m/sa 1

1) S = 160t - 16+3.

V(2) = 160 - 30 x).

= 160-64

= 96 m/sec.

$$(ii) \qquad \frac{ds}{dt} = v$$

$$(t-a)(t-8)=0$$

(ii) Find the acceleration of the Your at time see?

Aneessker 11743

12 Does The curve $y = x^4 - 3x^3 + 3$ have any hasizontal tangent 17 so where.

y = x4-2x2+2

Soli Taking Desinative

 $\frac{dy}{dx} = \frac{d}{dx} \left[x^4 - \partial x^3 + \partial \right]$

 $=\frac{d}{dx}\left(x^{4}\right)-\partial\frac{d}{dx}\left(x^{3}\right)+\frac{d}{dx}\left(\delta\right)$

 $\frac{dy}{dx} = 4x^3 - 4x + 0$

 $\frac{dy}{dn} = 4x^3 - 4x$

IT he congent is herizontal her $\frac{dy}{dx} = 0$

So, $4x^3 - 4x = 6$ $4x(x^3 - 1) = 0$ 4x = 6, $x^2 - 1 = 0$

So x=0,1,-1

The corresponding Point in $y = n' - \partial n' + \partial$ are given below.

For
$$x = 0$$
 $y = 0 - 0 + 2$
 $\Rightarrow y = 3$

$$y = 1 - \lambda(1) + \lambda.$$

Hence (0,2) (1,1) & (-1,1) Ans