Department of Electrical Engineering
 Assignment
 Date: 20/04/2020

Course Details

Course Title: Thermodynamics
Module: 02
Total Marks: Instructor: \qquad

Student Details

Name:
MUHAMMAD BILAL KHAN
Student ID: 16434

Q1	(a)	Express the temperature of $139^{\circ} \mathrm{C}$ on degree Fahrenheit, Rankine and Kelvin scales.		Marks 06
				CLO 1
	(b)	Derive the equation highlighting the work done by a gas or vapour in expanding for a constant temperature process.		Marks 05
				CLO 1
Q2		Analyze the given figure and match column 1 with the correct option of column 2.		$\begin{aligned} & \hline \text { Marks } \\ & 08 \\ & \hline \end{aligned}$
				CLO 1
		Column 1	Column 2	
		Process I	Adiabatic	
		Process II	Isobaric	
		Process III	Isochoric	
		Process IV	Isothermal	
Q3	(a)	Hydrogen is compressed under a constant pressure of $5760 \mathrm{lb} / \mathrm{ft}^{2}$ until its volume is reduced from 28 to $12 \mathrm{ft}^{3}$. Calculate the work done in compressing the gas.		Marks 07
				CLO 1
	(b)	Differentiate between enthalpy and entropy using examples from daily life.		Marks 04
				CLO 1

Question NO 1

Solution:

(1) Fahrenheit:
${ }^{0} \mathrm{~F}=\left(1.8^{* 0} \mathrm{C}\right)+32$
${ }^{0} \mathrm{~F}=\left(1.8^{*} 139\right)+32$
${ }^{0} \mathrm{~F}=(250.2)+32$
(2) Kelvin :
$K={ }^{0} \mathrm{C}+273$
$K=139+273$
$K=412 \mathrm{~K}$
(3) Rankine:
${ }^{0} \mathrm{R}=(1.8) \mathrm{K}$
${ }^{0} R=(1.8)(412)$
${ }^{0} \mathrm{R}=741.6$

Question NO 1 (B)

Isothermal Process :

Here the gas will expand during external work equal to the amount of heat supplied.

Mathematically:

$$
\begin{aligned}
W & =\int_{v_{\mathbf{2}}}^{v_{\mathbf{1}}} P d v \\
P_{1} V_{1} & =P_{2} V_{2}=P V=C
\end{aligned}
$$

So, $\quad P=\frac{C}{V}$

$$
\begin{aligned}
& W=\int_{v_{2}}^{v_{1}} \frac{c}{v} d v \\
& W=c \int_{v_{2}}^{v_{1}} \frac{1}{v} d v \\
& W=c \ln / \operatorname{lv} \int_{v}^{v_{1}} \\
& W=c\left[\ln \left(v_{2}-v_{1}\right)\right] \\
& W=c\left[\ln v_{2}-\ln v_{1}\right] \\
& W=c \ln \left(\frac{v_{2}}{v_{1}}\right) \\
& W=P V \ln \left(\frac{v_{2}}{V_{1}}\right)
\end{aligned}
$$

Question No 2

Question NO 3 (A)

Solution

Given:
$\mathrm{P}=5760 \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{V}_{1}=28 \mathrm{ft}^{3}$
$V_{2}=12 \mathrm{ft}^{3}$
Required:
Work done =?
Solution :
We know that
$W=-P \Delta V$
$W=-P\left(V_{2}-V_{1}\right)$
$W=5760(12-28)$
W=5760(-16)
$W=92160$

Question NO 3 (B)

Enthalpy:

Enthalpy is equal to the total internal energy of the system plus the product of process and volume.

Mathematically:
$H=E+P v$
The unit of enthalpy is Joule (J)

Example:

Refrigerator compressor are the example of enthalpy in our daily life .

(2) Entropy :

Entropy is the measure of systems thermal energy per unit temperature that is invaluable for during useful work .
$\mathrm{E}=\Delta \mathrm{Q} / \mathrm{T}$
The unit of entropy is Joule per kelvin $\left(\mathrm{JK}^{-1}\right)$

Example :

A campfire is the example of entropy.

