Department of Electrical Engineering Assignment

Date: 20/04/2020

Course Details

Course Title:				
Instructor:				

Thermodynamics

 Module:
 02

 Total Marks:
 30

16434

Student ID:

Student Details

Name:

MUHAMMAD BILAL KHAN

Q1	(a)	a) Express the temperature of 139 °C on degree Fahrenheit, Rankine and Kelvin scales.		
-				
	(b)	Derive the equation highlighting the work done by a gas or vapour in expanding for a		
		constant temperature process.		
Q2		Analyze the given figure and match column 1 with the correct option of column 2.		
•		P+ .		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Column 1	Column 2	
		Process I	Adiabatic	
		Process II	Isobaric	
		Process III	Isochoric	
		Process IV	Isothermal	
Q3	(a)	A) Hydrogen is compressed under a constant pressure of 5760 lb/ft ² until its volume is reduced from 28 to 12 ft ³ . Calculate the work done in compressing the gas.		
	(b) Differentiate between enthalpy and entropy using examples from daily life.			Marks 04
				CLO 1

Question NO 1

Solution:

(1) Fahrenheit:

⁰F=(1.8*⁰C)+32

⁰F=(1.8*139)+32

⁰F=(250.2)+32

(2) Kelvin :

K=⁰C+273

K=139+273

<mark>K=412K</mark>

(3) Rankine:

⁰R=(1.8)K

⁰R=(1.8)(412)

⁰R=741.6

Question NO 1 (B)

Isothermal Process :

Here the gas will expand during external work equal to the amount of heat supplied.

Mathematically:

$$W = \bigvee_{i} Pdv$$

$$P_{i} V_{i} = P_{2} V_{2} = PV = C$$
so,
$$P \cdot C_{v}$$

$$W = \bigvee_{v} C_{v} dv$$

$$W = C \int_{v} \frac{1}{v} dv$$

$$W = C \ln v \int_{v} \frac{1}{v} dv$$

$$W = C \left[\ln (V_{1} - V_{i}) \right]$$

$$W = C \left[\ln (V_{2} - \ln V_{i}) \right]$$

$$W = C \ln \left(\frac{V_{1}}{V_{1}} \right)$$

$$W = PV \ln \left(\frac{V_{2}}{V_{1}} \right)$$

Question No 2

Question NO 3 (A)

Solution

Given:

P=5760lb/ft²

 $V_1 = 28 \text{ ft}^3$

V₂ =12 ft³

Required:

Work done =?

Solution :

We know that

 $W=-P\Delta V$

 $W=-P(V_2-V_1)$

W= 5760 (12-28)

W=5760(-16)

<mark>W=92160</mark>

Question NO 3 (B)

Enthalpy:

Enthalpy is equal to the total internal energy of the system plus the product of process and volume .

Mathematically:

H=E+Pv

The unit of enthalpy is Joule (J)

Example:

Refrigerator compressor are the example of enthalpy in our daily life .

(2) Entropy :

Entropy is the measure of systems thermal energy per unit temperature that is invaluable for during useful work .

E=∆Q/T

The unit of entropy is Joule per kelvin (JK⁻¹)

Example :

A campfire is the example of entropy.