

NAME: Sayed Muslim shah

ID#: 14856

MODULE: Bachelors {Software Engineering}

SEMESTER: summer 2020

SUBJECT: operating system

INSTRUCTOR: Sir Daud Khan

Q1. Differentiate between a process and thread with example.

ANSWER:

Thread:

A thread is a flow of execution through the process code, with its own program counter, system

registers and stack. A thread is also called a light weight process. Threads provide a way to

improve application performance through parallelism. Threads represent a software approach

to improving performance of operating system by reducing the overhead thread is equivalent

to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each

thread represents a separate flow of control. Threads have been successfully used in

implementing network servers and web server. They also provide a suitable foundation for

parallel execution of applications on shared memory multiprocessors. Following figure shows

the working of the single and multithreaded processes.

Process:

In computing, a process is the instance of a computer program that is being executed by one or

many threads. It contains the program code and its activity. Depending on the operating

system (OS), a process may be made up of multiple threads of execution that execute

instructions concurrently.

Difference between Process and Thread

https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

Q2. List and discuss few types of thread.

ANSWER:

Types of Thread:

Threads are implemented in following two ways

User Level Threads -- User managed threads

Kernel Level Threads -- Operating System managed threads acting on kernel, an operating
system core.

User Level Threads:

In this case, application manages thread management kernel is not aware of the existence of

threads. The thread library contains code for creating and destroying threads, for passing

message and data between threads, for scheduling thread execution and for saving and restoring

thread contexts. The application begins with a single thread and begins running in that thread.

Advantages

➢ Thread switching does not require Kernel mode privileges.

➢ User level thread can run on any operating system.

➢ Scheduling can be application specific in the user level thread.

➢ User level threads are fast to create and manage.

Disadvantages

➢ In a typical operating system, most system calls are blocking.

➢ Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads:

▪ In this case, thread management done by the Kernel. There is no thread management
code in the application area. Kernel threads are supported directly by the operating
system. Any application can be programmed to be multithreaded. All of the threads
within an application are supported within a single process.

▪ The Kernel maintains context information for the process as a whole and for individuals’
threads within the process. Scheduling by the Kernel is done on a thread basis. The
Kernel performs thread creation, scheduling and management in Kernel space. Kernel
threads are generally slower to create and manage than the user threads.

Advantages

❖ Kernel can simultaneously schedule multiple threads from the same process on multiple

processes.

❖ If one thread in a process is blocked, the Kernel can schedule another thread of the same
process.

❖ Kernel routines themselves can multithreaded.

Disadvantages

❖ Kernel threads are generally slower to create and manage than the user threads.

❖ Transfer of control from one thread to another within same process requires a mode
switch to the Kernel.

Multithreading Models

Some operating system provides a combined user level thread and Kernel level thread
facility. Solaris is a good example of this combined approach. In a combined system,
multiple threads within the same application can run in parallel on multiple processors
and a blocking system call need not block the entire process. Multithreading models are
three types

✓ Many to many relationships.

✓ Many to one relationship.

✓ One to one relationship.

Many to Many Model:

In this model, many user level threads multiplexes to the Kernel thread of smaller or
equal numbers. The number of Kernel threads may be specific to either a particular
application or a particular machine.

Following diagram shows the many to many model. In this model, developers can
create as many user threads as necessary and the corresponding Kernel threads can
run in parallels on a multiprocessor.

Many to One Model

Many to one model maps many user level threads to one Kernel level thread. Thread
management is done in user space. When thread makes a blocking system call, the

entire process will be blocks. Only one thread can access the Kernel at a time, so
multiple threads are unable to run in parallel on multiprocessors.

If the user level thread libraries are implemented in the operating system in such a way
that system does not support them then Kernel threads use the many to one
relationship modes.

One to One Model

There is one to one relationship of user level thread to the kernel level thread. This
model provides more concurrency than the many to one model. It also another thread to
run when a thread makes a blocking system call. It supports multiple thread to execute
in parallel on microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding
Kernel thread. OS/2, Windows NT and windows 2000 use one to one relationship
model.

Q3. What is a deadlock? In what situations it occurs in an OS.

ANSWER:

Deadlock:

Deadlock is a situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource acquired by some

other process.

Consider an example when two trains are coming toward each other on same

track and there is only one track, none of the trains can move once they are in

front of each other. Similar situation occurs in operating systems when there are

two or more processes hold some resources and wait for resources held by

other(s).

For example, in the below diagram, Process 1 is holding Resource 1 and waiting

for resource 2 which is acquired by process 2, and process 2 is waiting for

resource 1.

deadlock occurs in an OS:

In an operating system, a deadlock occurs when a process or thread enters

a waiting state because a requested system resource is held by another

waiting process, which in turn is waiting for another resource held by another

waiting process.

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/System_resource

Q4. Discuss a solution to the critical-section problem must satisfy the three

requirements.

ANSWER:

The Critical-Section Problem:
A Critical Section is a code segment that accesses shared variables and
has to be executed as an atomic action. It means that in a group of
cooperating processes, at a given point of time, only one process must be
executing its critical section. If any other process also wants to execute its
critical section, it must wait until the first one finishes.

• The important feature of the system is that, when one process is executing in its
critical section, no other process is to be allowed to execute in its critical section.

• Thus, the execution of critical sections by the processes is mutually exclusive in
time.

• The critical-section problem is to design a protocol that the processes can use to
cooperate.
• Each process must request permission to enter its critical section.

• A solution to the critical-section problem must satisfy the following three
requirements:

I. Mutual Exclusion: If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections.

II. Progress: If no process is executing in its critical section, and there are some
processes that want to enter into their own critical sections, then the
decision of whom to enter must not be postponed indefinitely.

III. Bounded Waiting: There exist a bound on the number of times that other
processes are allowed to enter their critical sections after a process has made
a request to enter its critical section and before that request is granted.

Q5. Differentiate between dynamic loading and dynamic linking with example.

ANSWER:

Dynamic Loading:

In dynamic loading, a routine of a program is not loaded until it is called by the
program. All routines are kept on disk in a re-locatable load format. The main
program is loaded into memory and is executed. Other routines methods or
modules are loaded on request. Dynamic loading makes better memory space
utilization and unused routines are never loaded.

Dynamic Linking:
Linking is the process of collecting and combining various modules of code and data
into an executable file that can be loaded into memory and executed. Operating
system can link system level libraries to a program. When it combines the libraries
at load time, the linking is called static linking and when this linking is done at the
time of execution, it is called as dynamic linking.

In static linking, libraries linked at compile time, so program code size becomes
bigger whereas in dynamic linking libraries linked at execution time so program
code size remains smaller.

Differentiate between Dynamic loading and Dynamic Linking:

❖ Dynamic loading does not require special support from Operating

system, it is the responsibility of the programmer to check

whether the routine that is to be loaded does not exist in main

memory.

❖ Dynamic Loading load routine in main memory on call.

❖ Dynamic Linking requires special support from operating system,

the routine loaded through dynamic linking can be shared
across various processes.

❖ . Dynamic Linking load routine in main memory during
execution time, if call happens before execution time it is
postponed till execution time.

EXAMPLE:

➢ The dynamic loading for example can be created using Load Library
call in C or C++.

➢ Dynamic linking the linker while creating the exe does minimal work.
For the dynamic linker to work it actually has to load the libraries too.
Hence, it's also called linking loader.

Q6. Write your understanding about logical Vs Physical address space?

ANSWER:

Definition of Logical Address

Address generated by CPU while a program is running is referred as Logical

Address. The logical address is virtual as it does not exist physically. Hence,

it is also called as Virtual Address. This address is used as a reference to
access the physical memory location. The set of all logical addresses

generated by a program’s perspective is called Logical Address Space.

The logical address is mapped to its corresponding physical address by a

hardware device called Memory-Management Unit. The address-binding

methods used by MMU generates identical logical and physical address
during compile time and load time. However, while run-time the address-

binding methods generate different logical and physical address.

Definition of Physical Address

Physical Address identifies a physical location in a memory. MMU (Memory-

Management Unit) computes the physical address for the corresponding
logical address. MMU also uses logical address computing physical address.

The user never deals with the physical address. Instead, the physical

address is accessed by its corresponding logical address by the user.

The user program generates the logical address and thinks that the program

is running in this logical address. But the program needs physical memory
for its execution. Hence, the logical address must be mapped to the physical

address before they are used.

The logical address is mapped to the physical address using a hardware

called Memory-Management Unit. The set of all physical addresses

corresponding to the logical addresses in a Logical address space is

called Physical Address Space.

Logical versus Physical Address Space:

An address generated by the CPU is a logical address whereas address actually
available on memory unit is a physical address. Logical address is also known as
Virtual address.

Virtual and physical addresses are the same in compile-time and load-time address-
binding schemes. Virtual and physical addresses differ in execution-time address-
binding scheme.

The set of all logical addresses generated by a program is referred to as a logical
address space. The set of all physical addresses corresponding to these logical
addresses is referred to as a physical address space.

The run-time mapping from virtual to physical address is done by the memory
management unit (MMU) which is a hardware device. MMU uses following
mechanism to convert virtual address to physical address.

❖ The value in the base register is added to every address generated by a user

process which is treated as offset at the time it is sent to memory. For
example, if the base register value is 10000, then an attempt by the user to
use address location 100 will be dynamically reallocated to location 10100.

❖ The user program deals with virtual addresses; it never sees the real physical

addresses.

