NAME: AMIT SINGH

ID: 15478

SUBJECT: DIGITAL LOGIC DESIGN

SEMESTER: 3RD
PROGRAMME: BS (SOFTWARE ENGINEERING)

HALF SUBTRACTOR

AIM: Design and verify the logic circuit of Half-subtractor using logic gate.

OBJECTIVES: • To understand the principle of binary subtraction. • To understand half-subtractor concept. • Use truth table and Boolean Algebra theorems in simplifying a circuit design. • To implement half-subtractor circuit using logic gates

PROCEDURE: - Collect the components necessary to accomplish this experiment. • Plug the IC chip into the breadboard. - Connect the supply voltage and ground lines to the chips. PIN7 $=$ Ground and PIN14 $=+5 \mathrm{~V}$. \bullet According to the pin diagram of each IC mentioned above, make the connections according to circuit diagram. - Connect the inputs of the gate to the input switches of the LED. - Connect the output of the gate to the output LEDs. - Once all connections have been done, turn on the power switch of the bread-board - Operate the switches and fill in the truth table (Write "1" if LED is ON and " 0 " if LED is OFF Apply the various combination of inputs according to the truth table and observe the condition of Output LEDs.

HALF SUBTRACTOR: The half-subtractor is a combinational circuit which is used to per-form subtraction of two bits. It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow).

ObSERVATION TABLE:

A		B	D
0		0	0
0		1	1
1	0	1	
1	1	0	

RESULTS AND ANALYSIS: Verified the truth table as follows. Verified the truth table of Full Subtractor as $D=1$ i.e. LED which is connected to D terminal glows when inputs are, Y, BIN Verified the truth table of Full Subtractor as BOUT = 1 i.e. LED which is connected to BOUT terminal glows when inputs are X, Y, BIN

CONCLUSION: • To add two bits, we require one XOR gate (IC 7486) to generate Difference and one AND (IC 7408) and NOT Gate (IC 7432) to generate Borrow. - To add three bits, we require two half subtractor.

