
 Name = Tariq Bilal

 Class = Bs(cs)

 Id = 13588

Q1. Implement a code of Genetic Algorithm in any language and show the output?

Ans)

import

java.util.Random;

/**

 *

 * @author Vijini

 */

//Main class

public class SimpleDemoGA {

 Population population = new Population();

 Individual fittest;

 Individual secondFittest;

 int generationCount = 0;

 public static void main(String[] args) {

 Random rn = new Random();

 SimpleDemoGA demo = new SimpleDemoGA();

 //Initialize population

 demo.population.initializePopulation(10);

 //Calculate fitness of each individual

 demo.population.calculateFitness();

 System.out.println("Generation: " + demo.generationCount + " Fittest:

" + demo.population.fittest);

 //While population gets an individual with maximum fitness

 while (demo.population.fittest < 5) {

 ++demo.generationCount;

 //Do selection

 demo.selection();

 //Do crossover

 demo.crossover();

 //Do mutation under a random probability

 if (rn.nextInt()%7 < 5) {

 demo.mutation();

 }

 //Add fittest offspring to population

 demo.addFittestOffspring();

 //Calculate new fitness value

 demo.population.calculateFitness();

 System.out.println("Generation: " + demo.generationCount + "

Fittest: " + demo.population.fittest);

 }

 System.out.println("\nSolution found in generation " +

demo.generationCount);

 System.out.println("Fitness: "+demo.population.getFittest().fitness);

 System.out.print("Genes: ");

 for (int i = 0; i < 5; i++) {

 System.out.print(demo.population.getFittest().genes[i]);

 }

 System.out.println("");

 }

 //Selection

 void selection() {

 //Select the most fittest individual

 fittest = population.getFittest();

 //Select the second most fittest individual

 secondFittest = population.getSecondFittest();

 }

 //Crossover

 void crossover() {

 Random rn = new Random();

 //Select a random crossover point

 int crossOverPoint =

rn.nextInt(population.individuals[0].geneLength);

 //Swap values among parents

 for (int i = 0; i < crossOverPoint; i++) {

 int temp = fittest.genes[i];

 fittest.genes[i] = secondFittest.genes[i];

 secondFittest.genes[i] = temp;

 }

 }

 //Mutation

 void mutation() {

 Random rn = new Random();

 //Select a random mutation point

 int mutationPoint = rn.nextInt(population.individuals[0].geneLength);

 //Flip values at the mutation point

 if (fittest.genes[mutationPoint] == 0) {

 fittest.genes[mutationPoint] = 1;

 } else {

 fittest.genes[mutationPoint] = 0;

 }

 mutationPoint = rn.nextInt(population.individuals[0].geneLength);

 if (secondFittest.genes[mutationPoint] == 0) {

 secondFittest.genes[mutationPoint] = 1;

 } else {

 secondFittest.genes[mutationPoint] = 0;

 }

 }

 //Get fittest offspring

 Individual getFittestOffspring() {

 if (fittest.fitness > secondFittest.fitness) {

 return fittest;

 }

 return secondFittest;

 }

 //Replace least fittest individual from most fittest offspring

 void addFittestOffspring() {

 //Update fitness values of offspring

 fittest.calcFitness();

 secondFittest.calcFitness();

 //Get index of least fit individual

 int leastFittestIndex = population.getLeastFittestIndex();

 //Replace least fittest individual from most fittest offspring

 population.individuals[leastFittestIndex] = getFittestOffspring();

 }

}

//Individual class

class Individual {

 int fitness = 0;

 int[] genes = new int[5];

 int geneLength = 5;

 public Individual() {

 Random rn = new Random();

 //Set genes randomly for each individual

 for (int i = 0; i < genes.length; i++) {

 genes[i] = Math.abs(rn.nextInt() % 2);

 }

 fitness = 0;

 }

 //Calculate fitness

 public void calcFitness() {

 fitness = 0;

 for (int i = 0; i < 5; i++) {

 if (genes[i] == 1) {

 ++fitness;

 }

 }

 }

}

//Population class

class Population {

 int popSize = 10;

 Individual[] individuals = new Individual[10];

 int fittest = 0;

 //Initialize population

 public void initializePopulation(int size) {

 for (int i = 0; i < individuals.length; i++) {

 individuals[i] = new Individual();

 }

 }

 //Get the fittest individual

 public Individual getFittest() {

 int maxFit = Integer.MIN_VALUE;

 int maxFitIndex = 0;

 for (int i = 0; i < individuals.length; i++) {

 if (maxFit <= individuals[i].fitness) {

 maxFit = individuals[i].fitness;

 maxFitIndex = i;

 }

 }

 fittest = individuals[maxFitIndex].fitness;

 return individuals[maxFitIndex];

 }

 //Get the second most fittest individual

 public Individual getSecondFittest() {

 int maxFit1 = 0;

 int maxFit2 = 0;

 for (int i = 0; i < individuals.length; i++) {

 if (individuals[i].fitness > individuals[maxFit1].fitness) {

 maxFit2 = maxFit1;

 maxFit1 = i;

 } else if (individuals[i].fitness > individuals[maxFit2].fitness)

{

 maxFit2 = i;

 }

 }

 return individuals[maxFit2];

 }

 //Get index of least fittest individual

 public int getLeastFittestIndex() {

 int minFitVal = Integer.MAX_VALUE;

 int minFitIndex = 0;

 for (int i = 0; i < individuals.length; i++) {

 if (minFitVal >= individuals[i].fitness) {

 minFitVal = individuals[i].fitness;

 minFitIndex = i;

 }

 }

 return minFitIndex;

 }

 //Calculate fitness of each individual

 public void calculateFitness() {

 for (int i = 0; i < individuals.length; i++) {

 individuals[i].calcFitness();

 }

 getFittest();

 }

}

 Output

Q2. Implement a code of Fuzzy logic in any language and show the output?

Ans) #include <iostream>

#include <cmath>

#include <cstring>

const double cdMinimumPrice =0;

const double cdMaximumPrice =70;

using namespace std;

class CFuzzyFunction

{

protected :

 double dLeft, dRight;

 char cType;

 char* sName;

public:

 CFuzzyFunction(){};

 virtual ~CFuzzyFunction(){ delete [] sName; sName=NULL;}

 virtual void

 setInterval(double l,

 double r)

 {dLeft=l; dRight=r;}

 virtual void

 setMiddle(double dL=0,

 double dR=0)=0;

 virtual void

 setType(char c)

 { cType=c;}

 virtual void

 setName(const char* s)

 {

 sName = new char[strlen(s)+1];

 strcpy(sName,s);

 }

 bool

 isDotInInterval(double t)

 {

 if((t>=dLeft)&&(t<=dRight)) return true; else return false;

 }

 char getType(void)const{ return cType;}

 void

 getName() const

 {

 cout<<sName<<endl;

 }

 virtual double getValue(double t)=0;

};

class CTriangle : public CFuzzyFunction

{

private:

 double dMiddle;

public:

 void

 setMiddle(double dL, double dR)

 {

 dMiddle=dL;

 }

 double

 getValue(double t)

 {

 if(t<=dLeft)

 return 0;

 else if(t<dMiddle)

 return (t-dLeft)/(dMiddle-dLeft);

 else if(t==dMiddle)

 return 1.0;

 else if(t<dRight)

 return (dRight-t)/(dRight-dMiddle);

 else

 return 0;

 }

};

class CTrapezoid : public CFuzzyFunction

{

private:

 double dLeftMiddle, dRightMiddle;

public:

 void

 setMiddle(double dL, double dR)

 {

 dLeftMiddle=dL; dRightMiddle=dR;

 }

 double

 getValue(double t)

 {

 if(t<=dLeft)

 return 0;

 else if(t<dLeftMiddle)

 return (t-dLeft)/(dLeftMiddle-dLeft);

 else if(t<=dRightMiddle)

 return 1.0;

 else if(t<dRight)

 return (dRight-t)/(dRight-dRightMiddle);

 else

 return 0;

 }

};

int

main(void)

{

 CFuzzyFunction *FuzzySet[3];

 FuzzySet[0] = new CTrapezoid;

 FuzzySet[1] = new CTriangle;

 FuzzySet[2] = new CTrapezoid;

 FuzzySet[0]->setInterval(-5,30);

 FuzzySet[0]->setMiddle(0,20);

 FuzzySet[0]->setType('r');

 FuzzySet[0]->setName("low_price");

 FuzzySet[1]->setInterval(25,45);

 FuzzySet[1]->setMiddle(35,35);

 FuzzySet[1]->setType('t');

 FuzzySet[1]->setName("good_price");

 FuzzySet[2]->setInterval(40,75);

 FuzzySet[2]->setMiddle(50,70);

 FuzzySet[2]->setType('r');

 FuzzySet[2]->setName("to_expensive");

 double dValue;

 do

 {

 cout<<"\nImput the value->"; cin>>dValue;

 if(dValue<cdMinimumPrice) continue;

 if(dValue>cdMaximumPrice) continue;

 for(int i=0; i<3; i++)

 {

 cout<<"\nThe dot="<<dValue<<endl;

 if(FuzzySet[i]->isDotInInterval(dValue))

 cout<<"In the interval";

 else

 cout<<"Not in the interval";

 cout<<endl;

 cout<<"The name of function is"<<endl;

 FuzzySet[i]->getName();

 cout<<"and the membership is=";

 cout<<FuzzySet[i]->getValue(dValue);

 }

 }

 while(true);

 return EXIT_SUCCESS;

}Output

Q4. Give solved example of hierarchical Clustering?

Ans) Example:

Agglomerative Hierarchical Clustering

Example of Complete Linkage Clustering

Grouping begins by figuring a separation between each pair of units that you need to bunch. A

separation lattice will be symmetric (in light of the fact that the separation among x and y is equivalent

to the separation among y and x) and will have zeroes on the corner to corner (on the grounds that each

thing is separation zero from itself). The table underneath is a case of a separation framework. Just the

lower triangle is appeared, on the grounds that the upper triangle can be filled in by reflection.

Now lets start clustering. The smallest distance is between three and five and they get linked up or

merged first into a the cluster '35'.

 To acquire the new separation lattice, we have to evacuate the 3 and 5 sections, and supplant it by a

passage "35" . Since we are utilizing finished linkage grouping, the separation among "35" and each

other thing is the limit of the separation between this thing and 3 and this thing and 5. For instance,

d(1,3)= 3 and d(1,5)=11. Along these lines, D(1,"35")=11. This gives us the new separation

framework. The things with the littlest separation get grouped straightaway. This will be 2 and 4.

Proceeding along these lines, after 6 stages, everything is bunched. This is summed up beneath. On

this plot, the y-pivot shows the separation between the articles at the time they were grouped. This is

known as the bunch tallness. Various representations utilize various proportions of bunch tallness.

Complete Linkage

Below is the single linkage dendrogram for the same distance matrix. It starts with cluster "35" but

the distance between "35" and each item is now the minimum of d(x,3) and d(x,5). So c(1,"35")=3.

Single Linkage

Determining clusters

One of the problems with hierarchical clustering is that there is no objective way to say how many

clusters there are.

If we cut the single linkage tree at the point shown below, we would say that there are two clusters.

However, if we cut the tree lower we might say that there is one cluster and two singletons.

There is no usually settled upon approach to choose where to cut the tree. How about we take a

gander at some genuine information. In schoolwork 5 we consider quality articulation in 4 districts of

3 human and 3 chimpanzee minds. The RNA was hybridized to Affymetrix human quality

articulation microarrays. We standardized the information utilizing RMA and did a differential

articulation examination utilizing LIMMA. Here we chose the 200 most altogether differentially

communicated qualities from the examination. We group all the differentially communicated

qualities dependent on their mean articulation in every one of the 8 animal categories by mind area

medicines

Here are the bunches dependent on Euclidean separation and relationship separation, utilizing total

and single linkage grouping.

We can see that the grouping design for complete linkage separation will in general make minimized

bunches of bunches, while single linkage will in general include each point in turn to the group,

making long tacky bunches. As we would anticipate from our conversation of separations, Euclidean

separation and connection separation produce altogether different dendrograms.

Progressive grouping doesn't disclose to us what number of bunches there are, or where to slice the

dendrogram to shape bunches. In R there is a capacity cutttree which will cut a tree into bunches at a

predefined stature. Nonetheless, in view of our representation, we may want to cut the long branches

at various statures. Regardless, there is a decent measure of subjectivity in figuring out which

branches ought to and ought not be sliced to frame separate groups.

Understanding the clusters

To comprehend the groups we as a rule plot the log2(expression) estimations of the qualities in the

bunch, or at the end of the day, plot the quality articulations over the examples. (The numbering in

these diagrams are absolutely subjective.) Even however the medicines are unordered, I as a rule

interface the focuses originating from a solitary component to make the example more clear. These

are called profile plots.

Here is a portion of the profile plots from complete linkage bunching when we utilized Euclidean

separation:

These look very tightly packed. However, clusters 2 and 4 have genes with different up and down

patterns, because they have about the same mean expression. Cluster 2 are very highly expressed

genes.

Here's what we got when we use correlation distance:

These are a lot looser on the y-pivot since relationship centers around the articulation design, not the

mean. In any case, all the qualities in a similar group have a pinnacle or valley in similar medicines

(which are cerebrum areas by species mixes). Groups 1 and 2 are qualities that are separately higher

or lower in the cerebellum contrasted with other cerebrum locales in the two species.

Selecting a gene list

On a fundamental level it is conceivable to bunch all the qualities, despite the fact that imagining a

tremendous dendrogram may be tricky. Generally, some sort of primer examination, for example,

differential articulation investigation is utilized to choose qualities for grouping. There are valid

justifications to do as such, in spite of the fact that there are additionally a few admonitions.

Regularly in quality articulation, the separation metric utilized is relationship separation.

Relationship separation is equivalent to focusing and scaling the information, and afterward utilizing

Euclidean separation. When there are methodical treatment impacts, we expect the changeability of

quality articulation from treatment to treatment to be a blend of precise treatment impacts and

commotion. When there are no treatment impacts, the inconstancy of quality articulation is only

because of commotion. Be that as it may, focusing and scaling the information puts all variabity on a

similar scale. Subsequently qualities that show an example because of chance are not discernable

from those that have a precise part.

As we have seen, connection separation has preferred natural understanding over Euclidean

separation for quality articulation considers, however a similar scaling that makes it helpful for

finding organically important examples of quality guideline presents deceptive outcomes for qualities

that don't differentially communicate. Choosing qualities dependent on differential articulation

investigation evacuates qualities which are probably going to have just possibility designs. This

should upgrade the examples found in the quality bunches.

As an admonition, be that as it may, consider the impacts of quality determination on bunching tests

or medicines. The chose qualities are those which test positive in differential articulation

investigation. Utilization of those qualities to bunch tests is one-sided towards grouping the examples

by treatment.

	Ans) Example:
	Agglomerative Hierarchical Clustering

