
ID:11757

NAME:SALMAN KHAN

SUBJECT:PROGRAMMING
FUNDAMENTALS

TEACHER: DR. FAZAL-E- MALIK

DATE:25.08.2020

ANS:1 PART(A):SUM OF TWO NUMBER:



DIFFERENCE OF TWO NUMBERES:



PRODUCT OF TWO NUMBERS:

PART(B):





ANS:2 PATR(A): #include <stdio.h>
/* height and width of a rectangle in inches */

int width;

int height;

int area;

int perimeter;

int main() {

height = 7;

width = 5;

perimeter = 2*(height + width);

printf("Perimeter of the rectangle = %d inches\n", perimeter);

area = height * width;

printf("Area of the rectangle = %d square inches\n", area);

return(0);

FLOWCHART:



PART(B): #include <iostream>

#define PI 3.14159

using namespace std;

int main()

{

float radius, area, circum;

cout << "\n\n Find the area and circumference of any circle :\n";

cout << "----------------------------------------------------\n";

cout<<" Input the radius(1/2 of diameter) of a circle : ";

cin>>radius;

circum = 2*PI*radius;

area = PI*(radius*radius);



cout<<" The area of the circle is : "<< area << endl;

cout<<" The circumference of the circle is : "<< circum << endl;

cout << endl;

return 0;

}

FLOWCHART:

ANS:3PART(A):PROGRAMMING LANGUAGE:Programming
languages specially developed so that you could pass your data and instructions to the
computer to do specific job

There are two major types of programming languages,

Low Level Languages

High Level Languages

Low Level languages are further divided in to Machine language and Assembly
language



High Level Languages are, for scientific application FORTRAN and C languages are used.
On the other hand COBOL is used for business applications. A programming language
is a notation designed to connect instructions to a machine or a computer. Programming
languages are mainly used to control the performance of a machine or to express
algorithms. At present, thousand programming languages have been implemented. In
the computer field, many languages need to be stated in an imperative form, while
other programming languages utilize declarative form. The program can be divided into
two forms such as syntax and semantics. Some languages are defined by an SO standard
like C language.

MACHINE LANGUAGE: Machine Language is the only language that is directly
understood by the computer. It does not need any translator program

The only advantage is that program of machine language run very fast

There is nothing “below” machine language – only hardware.

Impossible for humans to read. Consists of only 0’s and 1’s.

0001001111110000

In the earliest days of computers, the only programming languages available were
machine languages. Each computer had its own machine language, which was made of
streams of 0s and 1s.

ASSEMBLY LANGUAGE: The next evolution in programming came with the
idea of replacing binary code for instruction and addresses with symbols. Because
they used symbols, these languages were first known as symbolic languages. The set of
these mnemonic languages were later referred to as assembly languages.

It is the first step to improve the programming structure, you should know that
computer can handle numbers and letter.

The set of symbols and letters forms the Assembly Language and a translator program
is required to translate the Assembly Language to machine language

This translator program used for Assembly Language is called Assembler

To program in assembly you need to understand concepts behind machine language and
execution-fetch cycle of CPU.

Assembly is a machine specific language.

Although Assembly and machine language might look similar, they are in fact two
different types of languages.

Assembly consists of both binary and simple words



Machine code composed only of 0’s and 1’s

HIGH LEVEL LANGUAGE: Although assembly languages greatly improved
programming efficiency, they still required programmers to concentrate on the
hardware they were using. Working with symbolic languages was also very tedious,
because each machine instruction had to be individually coded. The desire to improve
programmer efficiency and to change the focus from the computer to the problem
being solved led to the development of high- level languages.

Assembly and machine level languages require deep knowledge of computer hardware
where as in higher language you have to know only the instructions in English words
and logic of the problem.

Higher level languages are simple languages that use English and mathematical symbols
like +, -, %, / etc. for its program construction

Any higher level language has to be converted to machine language for the computer to
understand

For example COBOL (Common Business Oriented Language), FORTRAN (Formula
Translation) and BASIC (Beginners All-purpose Symbolic Instruction Code) are high
level languages

ADVANTAGE OF HIGH LEVE LANGUAGE: Higher level languages have
a major advantage over machine and assembly languages that higher level languages
are easy to learn and use (similar to the languages used by us in our day to day life.

TYPES OF PRGRAMING LANGUAGE: Procedural
Programming Language:
The procedural programming language is used to execute a sequence of statements
which lead to a result. Typically, this type of programming language uses multiple
variables, heavy loops and other elements, which separates them from functional
programming languages. Functions of procedural language may control variables, other
than function’s value returns. For example, printing out information.

Functional Programming Language:
Functional programming language typically uses stored data, frequently avoiding loops
in favor of recursive functions.The functional programing’s primary focus is on the
return values of functions, and side effects and different suggests that storing state are
powerfully discouraged. For example, in an exceedingly pure useful language, if a
function is termed, it’s expected that the function not modify or perform any o/p. It may,
however, build algorithmic calls and alter the parameters of these calls. Functional



languages are usually easier and build it easier to figure on abstract issues, however,
they’ll even be “further from the machine” therein their programming model makes it
difficult to know precisely, but the code is decoded into machine language (which are
often problematic for system programming).

Object-oriented Programming Language:
This programming language views the world as a group of objects that have internal
data and external accessing parts of that data. The aim this programming language is
to think about the fault by separating it into a collection of objects that offer services
which can be used to solve a specific problem. One of the main principle of object
oriented programming language is encapsulation that everything an object will need
must be inside of the object. This language also emphasizes reusability through
inheritance and the capacity to spread current implementations without having to
change a great deal of code by using polymorphism.

Scripting Programming Language:
These programming languages are often procedural and may comprise object-oriented
language elements, but they fall into their own category as they are normally not
full-fledged programming languages with support for development of large systems. For
example, they may not have compile-time type checking. Usually, these languages
require tiny syntax to get started.

Logic Programming Language
These types of languages let programmers make declarative statements and then
allow the machine to reason about the consequences of those statements. In a sense,
this language doesn’t tell the computer how to do something, but employing restrictions
on what it must consider doing.

To call these groups ” types of language ” is really a bit confusing. It’s easy to program
in an object-oriented style in C language. In truth, most of the languages include ideas
and features from various domains, which only helps to increase the usefulness of
these types of languages. Nevertheless, most of the programming languages do not best
in all styles of programming.

PART(B): TRANSLATORS: Computers only understand machine code (binary),
this is an issue because programmers prefer to use a variety of high and low-level
programming languages instead.

To get around the issue, the high-level and low-level program code (source code) needs
to pass through a translator.

A translator will convert the source code into machine code (object code).



There are several types of translator programs, each able to perform different tasks.

compiler: compiler are used to translate a program written in a high-level language
into machine code (object code).

Once compiled (all in one go), the translated program file can then be directly used by
the computer and is independently executable.Compiling may take some time but the
translated program can be used again and again without the need for recompilation.

An error report is often produced after the full program has been translated. Errors in
the program code may cause a computer to crash. These errors can only be fixed by
changing the original source code and compiling the program again.

INTERPRETER: Interpreter programs are able to read, translate and execute one
statement at a time from a high-level language program.

The interpreter stops when a line of code is reached that contains an error.

Interpreters are often used during the development of a program. They make
debugging easier as each line of code is analysed and checked before
execution.Interpreted programs will launch immediately, but your program may run
slower then a complied file.

No executable file is produced. The program is interpreted again from scratch every
time you launch it.

ASSEMBLER: Assemblers are used to translate a program written in a low-level
assembly language into a machine code (object code) file so it can be used and executed
by the computer.

Once assembled, the program file can be used again and again without re-assembly.


