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Abstract 
 
 In this paper about the proposes an improved 
Traffic Class Prioritization based Carrier Sense 
Multiple Access/Collision Avoidance scheme for 
prioritized channel access to heterogeneous-
natured Bio-Medical Sensor Nodes for IEEE 
802.15.4 Medium Access Control (MAC) in intra-
Wireless Body Area Networks. 
 
The prioritized channel also access is achieved by 
assigning a distinct, minimized and prioritized 
back off  period range to every  traffic class  in every 
back off during contention. And the TCP-
CSMA/CA, the BMSNs are distributed among 
four traffic classes based on the existing patient’s 
data classification. Five moderately designed 
backoff period ranges are proposed to work a 
distinct, minimized, and prioritized backoff period 
range to each traffic class in every backoff during 
contention.  
The produce results prove that the proposed TCP-
CSMA/CA scheme performs best than the IEEE 
802.15.4 based PLA-MAC, eMC-MAC, and PG-
MAC as it achieves a 47% also decrease in the 
packet delivery delay and a 63% is increase in the 
PDR. 
 
 

 
Introduction:  
    Wireless Body Area Networks provide 
unsupervised, inconspicuous and real-time 
continuous health monitoring and they are used in 
various applications, such as medical, personal 
healthcare, consumer electronics, military, sports 
and fitness, entertainment and rehabilitation 
systems. WBANs create advancement in human 
healthcare by offering proactive management and 
early diagnosis of various diseases cases. The ill 
patient’s vital-signs data are collected and 
analyzed by deploying on them. 
These BMSNs are responsible for sending the 
sensory vital-signs information to the local base 
station known as Body Coordinator, located and 
keep on near the human body. The MAC layer 
also plays an important role to get high 
performance Conventionally; some of the existing 
beacon-enabled MAC protocols for WBANs use 
standard slotted-Carrier Sense Multiple 
Access/Collision Avoidance (CSMA/CA) scheme 
of IEEE 802.15.4 for contention to access the 
channel. In slotted-CSMA/CA, each BMSN 
delays for a random number of backoff periods 
and this random number is selected from the 
backoff period range in each backoff during 
contention for channel access in the Contention 
Access Period (CAP). 
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Related Work 
The IEEE 802.15.4 not provide of any criterion for 
prioritized channel access to the heterogeneous-
natured BMSNs. Different IEEE 802.15.4 based 
MAC schemes have been proposed for traffic 
prioritization. Among them include the following: 
In all.  Provide traffic prioritization for diverse 
traffic types with specific Quality of Service 
requirements through preemptive channel allocation 
and non-preemptive data transmission in the 
allocated channels. The authors distribute the traffic 
into three classes. We can say for the Every class 
BMSN selects the random backoff number from the 
backoff period range 0 To 2BE (Class + 1) − 1, 
where Class is the traffic class value. However, 
every backoff period range starts from zero which 
Can result in the prior channel access to the low 
priority BMSN and then to the high priority BMSN. 
Moreover, the backoff period range of high priority 
class is repetitively used in the backoff period range 
of low priority traffic class which also can cause 
non-prioritized channel access. And more the same 
backoff period range is assigned to each traffic class 
in their third, fourth and fifth backoffs which 
increases collision and packet loss rate. In addition, 
a high backoff period range is assigned to low 
priority traffic classes in the third, fourth and fifth 
backoffs delaying low priority traffic. Introduced 
traffic Priority and load-aware MAC (PLA-MAC) 
scheme for WBANs to provide contention-based 
traffic prioritization with low packet delivery delay 
and energy consumption. 
However, this high transmission delay is not 
appropriate for medical applications. In addition, all 
BMSNs use the same backoff period range to select 
a random backoff number in each backoff; in that 
case, traffic is not prioritized. Hence, the BMSN 
with low priority data can easily access the channel 
before the one with high priority data in any backoff 
during contention. Priority-aware adaptive slot 
allocation MAC (PAS-MAC) protocol in WBAN 
for prioritized channel access to the heterogeneous-
natured BMSNs during contention to reduce delay 
and energy consumption. And finally this scheme is 
similar to LTA-MAC in terms of traffic 
prioritization, we can say that it has the same 
constraints which are already mentioned under the 
LTA-MAC scheme 

 
finally of Slotted-CSMA/CA Scheme of the 
Beacon-Enabled Mode of IEEE 802.15.4 MAC 
Every BMSN contends for channel access to 
transmit its packets by using the slotted-
CSMA/CA scheme during CAP of the MAC 
super frame. The slotted-CSMA/CA scheme is 
used by MAC sublayer for transmissions in 
beacon-enabled mode. The slotted-CSMA/CA 
scheme uses three variables. 
Number of Backoff, Contention Window, and 
BE. The NB is the number of backoffs that are 
required by the CSMA/CA scheme against each 
transmission attempt, and it initializes to zero at 
the start of each new transmission attempt. CW 
is the waiting time. 
First standard slotted-CSMA/CA scheme 
initializes the variables NB = 0 and CW = 2. 
This slotted-CSMA/CA scheme also uses some 
constants: macMinBE and aMaxBE. And the 
macMinBE is the minimum number of backoffs, 
and its default value is 3 while aMaxBE is the 
maximum number of backoffs and it is 
initialized by 5. If battery life extension (BLE) 
(i.e., used to determine the duration of CAP, 
which is equivalent to six complete backoff 
periods, if BLE = true) initializes to true then 2  
is assigned to BE, otherwise the value of 
macMinBE. 
Furthermore, the MAC sublayer of BMSN 
requests the PHY sublayer to perform clear 
channel assessment (CCA) at the backoff period 
boundary to ensure collision-free channel access. 
If the value of CW is not equal to zero, the 
MAC sub layer of BMSN requests PHY 
sublayer to perform CCA again at the backoff 
Each BMSN performs at most five backoffs to 
access the channel against each packet. In the 
first backoff, each BMSN selects a random 
number from the range [0–7] and completes the 
backoff period for the selected number of times. 
In the second backoff, each BMSN selects a 
random number from the range [0–15]. Likewise, 
in the third backoff, the selection of a random 
number is from the range [0–31], which remains 
unchanged in the fourth and fifth backoffs. 
However, the use of the same backoff period 
range by all BMSNs that belong to different TCs 
in each backoff results in high collisions. The 
retransmission of collided data packets causes a 
higher packet delivery delay with low throughput 
and low energy efficiency. 
 

  



1. Design of TCP-CSMA/CA Scheme 
The backoff process is discussed in detail in the 
following sub-sections.    In addition, each improved 
backoff of the TCP-CSMA/CA is carried out in the 
proposed algorithm shown in Algorithm. 
  

1.1. Proposed Backoff Period Ranges for All 
Backoffs 

The proposed TCP-CSMA/CA scheme provides distinct, 
minimized and prioritized backoff period ranges for all 
backoffs to solve the problems above by introducing the 
following equations. 
Backoff Period Range used in the first backoff: 
 
TC 2(BE+1) To 2BE + 4TC + 1 (1) 
Backoff Period Range used in the second backoff: 
2BE (TC + 1) To 2BE + 4TC + 3 (2) 
Backoff Period Range used in the third backoff: 
2BE (TC + 1) − 4TC To 2BE + 4TC + 3 (3) 
Backoff Period Range used in the fourth backoff: 
2(BE−1) + 4(TC + 1) To 2BE + 4TC − 1 (4) 
Backoff Period Range used in the fifth backoff: 
2(BE−1) + 4TC To 2(BE−1) + 4TC + 3 
need to be delivered within a specific time-frame, e.g., 
EEG and , reliability traffic class for BMSNs with 
reliability data packets (should be delivered with 
minimum losses but not within specific time-frame e.g., 
HR and RR), delay traffic class for BMSNs with delay 
data packets (can tolerate some losses but need to be 
delivered within specific time-frame e.g., telemedicine 
video imaging) and non-constrained traffic class for 
BMSNs with non-constrained data packets  (can tolerate 
losses and do not have any time-constraint e.g., BP and 
temperature). 

TC Priority Classification of 
BMSNs 

Traffic Class 

0 first BMSNs with CDPs Critical Traffic 
Class (CTC) 

1 second BMSNs with RDPs Reliability 
Traffic Class 

(RTC) 
2 third BMSNs with DDPs Delay Traffic 

Class (DTC) 
3 fourth BMSNs with NDPs Non-

constrained 
Traffic Class 

(NTC) 
             Table 1. Traffic Class Prioritization. 
 
 

1.1.2 Backoff Process 
The contention is distributed among five backoffs. 
In Figure1, TCP-CSMA/CA scheme initializes the 
variables NB to 0 and CW to 2.   It also uses 
constants; macMinBE and aMaxBE to represent    
the minimum and the maximum number of backoffs 
respectively. The value of macMinBE is 1 and the 
value of aMaxBE is 5.   Then,  the BMSN verifies 
that the value of BLE is either true or false. In TCP-
CSMA/CA scheme, BLE is initialized to false. The 
variable BE is initialized to value 1. Afterwards, the 
MAC sublayer of the BMSN locates the next 
backoff period boundary. It further verifies whether 
BMSN is with CDP or not. If it is, then 0 is assigned 
to its TC. Otherwise, it verifies whether BMSN is 
with RDP or not. If it is, then 1 is assigned to its TC. 
However, if BMSN is with DDP, then 2 is assigned 
to its TC. Otherwise, 3 is assigned to its TC.  
Figure 1. Flowchart of Traffic Class Prioritization 
based Carrier Sense Multiple Access/Collision 
Avoidance (TCP-CSMA/CA) scheme. The dotted 
blocks show the contributions made to assign a 
distinct, minimized, and prioritized backoff period 
range to each traffic class in every backoff. 
 

 

1.1.    Algorithm for TCP-CSMA/CA Scheme 

The following algorithm for the proposed TCP-
CSMA/CA scheme is presented in Algorithm 1. The 
algorithm assigns the distinct, minimized, and prioritized 
backoff period ranges to each traffic class in every 
backoff. Therefore, each traffic class accesses the channel 
on a priority basis and in the end. 

 
Hence, the performance of TCP-CSMA/CA 
scheme is improved in terms of packet delivery 
delay, PDR, throughput, and energy 
consumption. The detailed description of TCP-
CSMA/CA scheme is in Section. 
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Algorithm 1: TCP-CSMA/CA: Traffic Class Prioritization-based slotted-CSMA/CA 
Notations 
BE: Backoff Exponent NB: Number of Backoffs 
CW: Contention Window Size BLE: Battery Life Extension CCA: Clear Channel Assessment 
Mac MinBE: A constant that represents minimum value of BE aMaxBE: A constant that represents the maximum 
value of BE TC: Traffic Class 
MacMa xCSMA Backoff: A constant that specifies the limitation of the number of backoffs 
Input 
NB = 0, CW = 2, BLE = 0, BMSN_i, CCA = 2, macMinBE = 1, aMaxBE = 5, macMaxCSMABackoff = 4 
Process 

1. Set CW=2, NB=0 
2. if (BLE == true) then 
3. Set BE ← min (2, macMinBE) [step 1] 
4. GOTO [step 2] 
5. else 
6. Set BE ← macMinBE 
7. GOTO [step 2] 
8. end if 
9. Locate Backoff period boundary [step 2] 
10. if (BMSN_i with CDPs == true) then [step 3] 
11. Set TC ← 0 
12. GOTO [step 6] 
13. else if (BMSN_i with RDPs == true) then [step 4] 
14. Set TC ← 1 
15. GOTO [step 6] 
16. else if (BMSN_i with DDPs == true) then [step 5] 
17. Set TC ← 2 
18. GOTO [step 6] 
19. else 
20. Set TC ← 3 
21. GOTO [step 6] 
22. end if 
23. Delay for random unit backoff period in   TC 2(BE+1) To 2BE + 4TC + 1 [step 6] 
24. PHY sublayer of BMSN_i performs CCA on backoff period boundary [step 7] 
25. if (CAP_channel == idle) then 
26. Set CW ← CW-1 [step 8] 
27. if (CW == 0) then 
28. Transmit the packet 
29. else 
30. GOTO [step 7] to perform CCA again 
31. end if 
32. else //when channel is busy 
33. Set CW ← 2, NB ← NB+1, BE ← min (BE+1, aMaxBE) [step 9] 
34. end if 
35. if (NB > macMaxCSMABackoff) then 
36. BMSN_i drops the packet and algorithm is terminated with the status of channel access failure 
37. else 
38. if (BE == 2) then [step 10] 
39. Delay for random unit backoff period in [2BE (TC + 1) To 2BE + 4TC + 3] [step 11] 
40. GOTO [step 7] 
41. else if (BE == 3) then [step 12] 
42. Delay for random unit backoff period in [2BE (TC + 1) − 4TC To 2BE + 4TC + 3] [step 13] 
43. GOTO [step 7] 
44. else if (BE == 4) then [step 14] 
45. Delay for random unit backoff period in [2(BE−1) + 4(TC + 1) To 2BE + 4TC − 1] [step 15] 



Σ
 
Σ 

46. GOTO [step 7] 
47. else 
48. Delay for random unit backoff period in   2(BE−1) + 4TC To  2(BE−1) + 4TC + 3 [step 16] 
49. GOTO [step 7] 
50. end if //end of inner if which works on different values of BE 

50. End if //end of outer if which checks NB > macMaxCSMABackoff 
Output: A decrease in packet collision rate, packet delivery delay, packet loss rate, energy  

 
5. Performance Evaluation 

An extensive simulation was conducted in NS-2 
to evaluate the performance of the TCP-
CSMA/CA scheme against PLA-MAC [68], 
eMC-MAC [69], and PG-MAC [71] in terms of 
average packet delivery delay, throughput, PDR, 
PLR, and energy consumption. directly connected 
to the on-body local base station, body 
coordinator (BC). All the BMSNs were deployed 
within 3 m around the BC 
 

5.1. Simulation Model 
Fourteen heterogeneous-natured BMSNs were 
deployed on the simulated human body. 

 
. Each transmitted their observed data packets to 
the BC using contention to access the channel in 
the CAP. It was assumed that the BMSNs had 
limited processing power and energy supply 
while BC had more processing power and 
external power supply. The rest of the simulation 
parameters are shown in Table3. 

 
5.1. Simulation Results 

The performance of the TCP-CSMA/CA scheme is presented in two dimensions. (1) In terms 
of different number of BMSNs which are varied from 1 to 14, and (2) In terms of various traffic 
classes of TCP-CSMA/CA conducted with respect to varying time in seconds. The analyses are 
explained below.                                    Table 3. Simulation parameters. 

 

Parameter Value Parameter Value 

Operating Carrier Frequency 2.4 GHz Base Slot Duration 60 symbols 
Channel Data Rate 250 kbps Sending Data Rate 62.5 kbps 

A Slot Duration 15.36 ms Beacon Interval Duration 491.52 ms 
Super frame Duration 245.76 ms Inactive Period Duration 245.76 ms 

Number of super frame Slots 16 MAC Data Payload 102 bytes 
Beacon Order (BO) 5 Max PHY Packet Size 127 bytes 

super frame Order (SO) 4 Turnaround Time 12 symbols 
a CCA Time 8 symbols UnitBackoffPeriod 20 symbols 

Max Frame Retries 3 macAckWaitDuration 55 
Number of nodes 14 Body Coordinator 1 

Minimum BE 1 Maximum BE 5 
Battery Life Extension (BLE) False Synchronization Mode Beacon-

Enabled 
Traffic Type CBR Initial Power 100 W 

 
MaxCSMABackoffs 

4 Power Consumed in Transmission 
state 

0.027–0.22 W 

Power Consumed in the Reception 
state 

0.0018 W Power Consumed during Transition 0.0004 W 

Power consumed in a Sleep state 0.000005 
W 

Time Required for Transition 0.0008 s 

Simulation Time 2000 s Topology Star 



PLA-MAC 

PG-MAC 
 

Similarly, in Figure2, PG-MAC scheme 
uses a D type variable instead of BE to calculate 
backoff period range. Therefore, each traffic 
class uses only one backoff period range, 
which remains unchanged in all backoffs, 
leading to the high collision and degradation of 
performance due to    the retransmission of 
collided data packets. Thus, PG-MAC shows 
higher delay after the fourth BMSN which 
increases gradually after 7th BMSN. The 
proposed TCP-CSMA/CA observes the lowest 
average packet delivery delay.  

 
 

The reason is that each traffic class gets a distinct, 
minimized, and prioritized backoff period range in 
every backoff. Even in the last backoff, the upper 
limit of the backoff period range for lowest TC is 
31, which also reduces the packet delivery delay of 
the BMSNs belonging to the lowest level TC. Thus, 
the TCP-CSMA/CA scheme reduces the average 
packet delivery delay and attains improvement of 
58%, 23%, and 59% as compared to the PLA-
MAC, eMC-MAC, and PG-MAC schemes, 
respectively 
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                                 Figure 2. Average packet delivery delay versus number of BMSNs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 
 

Figure3 exhibits the throughput comparison of 
TCP-CSMA/CA scheme with the 
benchmarked MAC schemes. In PLA-MAC, 
the BMSNs with DPs and OPs use a high 
backoff period range. Therefore, the 
throughput of the PLA-MAC decreases 
gradually. In PLA-MAC, a distinct backoff 
period range assigns to each traffic class in the 
first backoff whose range remains unchanged 
until the last backoff. However, this repetitive 
assignment of the same backoff period range 
in all backoffs increases collision which results 
in more retransmission 

, thereby, reducing the overall throughput of 
PLA-MAC. Similarly, in eMC-MAC, the 
lower priority traffic classes get higher 
backoff period ranges resulting in the 
degradation of the throughput prioritized 
backoff period range to each traffic class in 
every backoff. The achieved throughputs of 
TCP-CSMA/CA scheme are 55% compared 
to PLA-MAC, 56% compared to eMC-MAC, 
and 61% compared to PG-MAC. 
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        Figure 3. Throughput versus number of  
BMSNs 
 

Figure 4 presents the packet delivery ratio 
comparison of the TCP-CSMA/CA scheme with 
the benchmarked MAC schemes. In PLA-MAC, 
the overall PDR of the network is 55%. BMSNs 
numbers 1, 3, 4, 9, and 11 show PDR below 30% 
as shown in Figure4. As stated earlier, in PLA-
MAC, every TC uses the same backoff period 
range during contention in every backoff which 
results in increased packet drop rate. 
This is due to the repetition of particular backoff 
period range against every traffic class in each 
backoff. The proposed TCP-CSMA/CA scheme 
presents 87% network PDR. Moreover, the 
BMSNs that belong to different traffic classes 
show more than 50% PDR. In particular, the fifth 
BMSN shows 95% PDR, eighth BMSN presents 
96% PDR, 11th BMSN achieves 92% PDR, and 
14th BMSN has 95% PDR as shown in Figure4 
The reason is due to the prioritized, minimized, 
and distinct backoff period ranges used by each 
traffic class in every backoff.  Hence,  the 
performance of the proposed TCP-CSMA/CA 
scheme has an improvement of 58% more than 
PLA-MAC, 50% more than eMC-MAC, and 81% 
more than PG-MAC in terms of network PDR. 

Figure 5 shows a comparative analysis of the 
TCP-CSMA/CA scheme with the existing 
benchmarked MAC schemes regarding the 
packet loss ratio. The PLA-MAC shows 45% 
netw ork PLR. In particular, the 1st, 3rd, 4th, 
9th and 11th BMSNs show PLR more than 
70% as shown in Figure5. This high packet 
loss rate is due to the repetitive use of a 
particular backoff period range for each traffic 
class in all backoffs. Similarly, eMC-MAC 
shows an overall 42% network PLR and 43% 
BMSNs present PLR above 70% as shown in 
Figure5. In particular, the first five BMSNs 
that represent high priority packets show 
abysmal performance that is more than 70% 
PLR because they use minimal backoff period 
range. Furthermore, PG-MAC presents very 
high PLR, which is the result of repetitive use 
of the specific backoff period range by each 
traffic class in every backoff. It is obvious 
from Figure5that in the TCP-CSMA/CA 
scheme Comparatively; the energy 
consumption of BMSNs is reduced in the 
proposed TCP-CSMA/CA scheme. The TCP-
CSMA/CA consumes 70% less energy as 
compared to PLA-MAC, 59% less than eMC-
MAC and 64% less as compared to PG-MAC. 
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Figure 5. Packet loss ratio versus number of BMSNs. 
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Comparison among Different Traffic Classes of TCP-
CSMA/CA 
Figure7exhibits the packet delivery delay comparison 
among the traffic classes of TCP-CSMA/CA. The CTC 
shows low packet delivery delay as compared to other 
traffic classes. This is because TCP-CSMA/CA assigns 
[0–3] i.e., the lowest backoff period range to CTC in 
the first backoff. Similarly, TCP-CSMA/CA assigns 
[4–7] as a backoff period range to RTC in the first 
backoff. RTC always get distinct and second lowest 
priority backoff period range in every backoff. Thus, 
RTC observes a bit more packet delivery delay as 
compared to CTC. In addition, DTC and NTC have 
slightly higher packet delivery delay as compared to 
CTC and RTC. The reason is that BMSNs that belongs 
to DTC and NTC comparatively get higher backoff 
period ranges. 
 
Figure8demonstrates the throughput comparison 
among the traffic classes of TCP-CSMA/CA. The CTC 
shows comparatively higher throughput. However, in 
each backoff, the lowest backoff period range is 
assigned to CTC. As a result, CTC gets the channel 
access prior to other traffic classes and get more 
opportunity for data transmission. In a similar way, the 
second lowest backoff period range is assigned to RTC 
and thus, achieves second highest throughput. On the 
other hand, DTC and NTC achieve lower throughput 
because they get higher backoff period ranges during 
contention in the CAP. 
 
Figure9presents the packet delivery ratio comparison 
of traffic classes. CTC achieves highest PDR. The 
reason is that the highest priority is given to CTC by 
assigning the lowest backoff period range to CTC. In a 
similar fashion, RTC, DTC, and NTC achieve the 
packet delivery ratios according 
 
Figure10shows the packet loss ratio comparison of the 
various TCP-CSMA/CA traffic classes. CTC has the 
lowest packet loss rate whereas RTC has higher PLR. 
The reason is that in every backoff, the backoff period 
range assigned to CTC is lower than the RTC. 
Indistinguishably, DTC and NTC observe 
comparatively higher PLR, since, the higher backoff 
period is given to these traffic classes in every backoff. 
 

 
Figure11unveils the energy consumption 
comparison among different traffic classes of 
TCP-CSMA/CA. CTC and RTC consume 
more energy as compared to DTC and NTC. 
This is because they both get more 
transmission opportunity. Overall, CTC and 
RTC attain better performance as 
 
Conclusions 
The main goal of the current study was to 
provide prioritized channel access to 
heterogeneous-natured BMSNs of different 
traffic classes with reduced packet delivery 
delay, packet loss, and energy consumption, 
and improved throughput and PDR. In 
summary, the study revealed that the 
performance of IEEE 802.15.4 based slotted-
CSMA/CA decreases by the following 
issues. When the same backoff period range 
is assigned to the BMSNs of each traffic 
class in every backoff during contention, 
when the BMSNs of each traffic class 
repetitively use the same backoff period 
range in its last three backoffs, and when the 
backoff period range of high priority traffic 
class is repetitively used in the backoff period 
range of the low priority traffic class in each 
backoff. And when the assigned backoff 
period range in the first backoff remains 
unchanged in all of the next backoffs. All the 
above-mentioned issues are resolved by 
assigning a distinct and prioritized backoff 
period range to each traffic class in every 
backoff. Additionally, the assigned backoff 
period range must also be moderately 
minimized to provide balanced transmission 
opportunity to each traffic class. In the 
future, we plan to enhance the TCP-
CSMA/CA scheme based on the CSMA/CA 
of IEEE 802.15.6 MAC in terms of 
prioritized channel access for heterogeneous-
natured BMSNs to further improve on its 
performance. 
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Figure 9. Packet delivery ratio versus time in seconds. 
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Figure 11. Energy consumption of traffic classes versus time in seconds. 
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