

IQRA NATIONAL UNIVERSITY PESHAWAR

DEPTT. B.E. (ELECTRICAL)

8TH SEMESTER

SPRING 2020

FINAL TERM EXAMINATION

DATA STRUCTURE AND ALGORITHMS

NAME : ABDUL MATEEN

ID : 13009

INSTRUCTOR: DATE OF SUBMISSION:

MUHAMMAD ADIL ASST. PROF 24 / JUNE / 2020

• Attempt All Tasks.
Q#1. (a) Sort the given list using Insertion Sort. (10)

56, 59, 45, 40, 43, 55

Solution:

Dry Steps:

1. For j ← 2 to n (start of outer-for-loop)

2. key ← A[j] (temporary value)

3. i ← j − 1 (counter use for while loop)

4. while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

a. A[i + 1] ← A[i]
b. i ← i − 1

end of inner-while-loop

5. A[i + 1] ← 𝑘𝑒𝑦

6. Exit

Step # 1: for j ← 2 to 6

Step # 2: key ← A[j]

 key ← A[2]

 key ← 59

Step # 3: i ← j − 1

 i ← 2 − 1

 i ← 1

Step # 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (1 >= 1) //condition is true

AND

(A[1] >= 59)

(56 > = 59) //condition is false

 So, while loop gets terminated

end of inner while loop

Step # 5: A[i + 1] ← 𝑘𝑒𝑦

 A[1 + 1] ← 𝑘𝑒𝑦

 A[2] ← 59

 56, 59, 45, 40, 43, 55

Step # 1: for j ← 3

Step # 2: key ← A[j]

 key ← A[3]

 key ← 45

Step # 3: i ← j − 1

 i ← 3 − 1

 i ← 2

Step # 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (2 >= 1) //condition is true

AND

(A[2] >= 45)

(59 > = 45) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[2+1]←A[2]

A[3]←A[2]

 56, 59, 59, 40, 43, 55

b) i ← i − 1

 i ← 2 − 1

 i ← 1

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (1 >= 1) //condition is true

AND

(A[1] >= 45)

(56 > = 45) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[1+1]←A[1]

A[2]←A[1]

 56, 56, 59, 40, 43, 55

b) i ← i − 1

 i ← 1 − 1

 i ← 0

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (0 >= 1) //condition is false

 So, while loop gets terminated

end of inner while loop

Step # 5: A[i + 1] ← 𝑘𝑒𝑦

 A[0 + 1] ← 𝑘𝑒𝑦

 A[1] ← 45

 45, 56, 59, 40, 43, 55

Step # 1: for j ← 4

Step # 2: key ← A[j]

 key ← A[4]

 key ← 40

Step # 3: i ← j − 1

 i ← 4 − 1

 i ← 3

Step # 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (3 >= 1) //condition is true

AND

(A[3] >= 40)

(59 > = 40) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[3+1]←A[3]

A[4]←A[3]

 45, 56, 59, 59, 43, 55

b) i ← i − 1

 i ← 3 − 1

 i ← 2

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (2 >= 1) //condition is true

AND

(A[2] >= 40)

(56 > = 40) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[2+1]←A[2]

A[3]←A[2]

 45, 56, 56, 59, 43, 55

b) i ← i − 1

 i ← 2 − 1

 i ← 1

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (1 >= 1) //condition is true

AND

(A[1] >= 40)

(45 > = 40) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[1+1]←A[1]

A[2]←A[1]

 45, 45, 56, 59, 43, 55

b) i ← i − 1

 i ← 1 − 1

 i ← 0

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (0 >= 1) //condition is false

 So, while loop gets terminated

end of inner while loop

Step # 5: A[i + 1] ← 𝑘𝑒𝑦

 A[0 + 1] ← 𝑘𝑒𝑦

 A[1] ← 40

 40, 45, 56, 59, 43, 55

 Again go to check for loop condition

Step # 1: for j ← 5

Step # 2: key ← A[j]

 key ← A[5]

 key ← 43

Step # 3: i ← j − 1

 i ← 5 − 1

 i ← 4

Step # 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (4 >= 1) //condition is true

AND

(A[4] >= 43)

(59 > = 43) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[4+1]←A[4]

A[5]←A[4]

 40, 45, 56, 59, 59, 55

b) i ← i − 1

 i ← 4 − 1

 i ← 3

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (3 >= 1) //condition is true

AND

(A[3] >= 43)

(56 > = 43) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[3+1]←A[3]

A[4]←A[3]

 40, 45, 56, 56, 59, 55

b) i ← i − 1

 i ← 3 − 1

 i ← 2

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (2 >= 1) //condition is true

AND

(A[2] >= 43)

(45 > = 43) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[2+1]←A[2]

A[3]←A[2]

 40, 45, 45, 56, 59, 55

b) i ← i − 1

 i ← 2 − 1

 i ← 1

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (1 >= 1) //condition is true

AND

(A[1] >= 43)

(40 > = 40) //condition is false

 So, while loop gets terminated

end of inner while loop

Step # 5: A[i + 1] ← 𝑘𝑒𝑦

 A[1 + 1] ← 𝑘𝑒𝑦

 A[2] ← 43

 40, 43, 45, 56, 59, 55

 Again go to check for loop condition

Step # 1: for j ← 6

Step # 2: key ← A[j]

 key ← A[6]

 key ← 55

Step # 3: i ← j − 1

 i ← 6 − 1

 i ← 5

Step # 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

 (5 >= 1) //condition is true

AND

(A[5] >= 55)

(59 > = 55) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[5+1]←A[5]

A[6]←A[5]

 40, 43, 45, 56, 59, 59

b) i ← i − 1

 i ← 5 − 1

 i ← 4

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (4 >= 1) //condition is true

AND

(A[4] >= 55)

(56 > = 55) //condition is true

 So, while loop gets executed

a) A[i + 1] ← A[i]

A[4+1]←A[4]

A[5]←A[4]

 40, 43, 45, 56, 56, 59

b) i ← i − 1

 i ← 4 − 1

 i ← 3

 again go to check while loop condition

while (i >= 1) AND (A[i] >= key)

 (3 >= 1) //condition is true

AND

(A[3] >= 55)

(45 > = 55) //condition is false

 So, while loop gets terminated

end of inner while loop

Step # 5: A[i + 1] ← 𝑘𝑒𝑦

 A[3 + 1] ← 𝑘𝑒𝑦

 A[4] ← 55

 40, 43, 45, 55, 56, 59

 Again go to check for loop condition

 j ← 7 to 6 // condition is false

 so for loop also gets terminated

 program will exit here

Q#2. Construct Binary Trees from given list of numbers and then verify the tree. (10)

25, 15, 35, 17, 33, 36, 25, 13, 15, 40, 38, 42, 20

Verification using In-order-traversal:

 42, 40, 38, 36, 35, 33, 25, 25, 20, 17, 15, 15, 13

25

15 35

36 33

40

42 38

25

17 13

15 20

Q#3. Construct Binary Trees from given Mathematical Expressions:

i. H + G * 2 – (F ^ M) (05)

ii. A * D + T ^ B – R (05)

Q#4. Apply all the three Binary Tree Traversal Techniques on each of the Tree constructed

in Q#3. (06 + 06)

i. H + G * 2 – (F ^ M)

a. In-Order-Traversal:

➢ Visit left-sub tree

➢ Process Parent node

➢ Visit right-sub tree

H, +, G, *, 2, -, F, ^, M

 +

H -

* ^

G 2 F M

 +

* -

^ R

T B

A D

b. Pre-Order-Traversal:

➢ Process parent node

➢ Visit left-sub tree

➢ Visit right-sub tree

+, H, -, *, G, 2, ^, F, M

c. Post-Order-Traversal:

➢ Visit left-sub tree

➢ Visit right-sub tree

➢ Process parent node

H, G, 2, *, F, M, ^, -, +

ii. A*D+T^B-R

a. In-Order-Traversal:

➢ Visit left-sub tree

➢ Process Parent node

➢ Visit right-sub tree

A, *, D, +, T, ^, B, -, R

b. Pre-Order-Traversal:

➢ Process parent node

➢ Visit left-sub tree

➢ Visit right-sub tree

+, *, A, D, -, ^, T, B, R

c. Post-Order-Traversal:

➢ Visit left-sub tree

➢ Visit right-sub tree

➢ Process parent node

A, D, *, T, B, ^, R, -, +

Q#5. Fill in the blanks. (08)

i. Elements of a Tree are called nodes.

ii. The graphical line drawn between Nodes of a Tree is called edge.

iii. Level Number of a Root is zero .

iv. All the nodes with same Level Number belong to same generation .

v. The Left-Most Child Node is oldest brother Node.

vi. The Right-Most Child Node is youngest brother Node.

vii. A Tree is a non-linear Data Structure.

viii. An Ordered Set of Ordered Trees is called a forest .

