

IQRA NATIONAL UNIVERSITY PESHAWAR DEPTT. B.E. (ELECTRICAL)

 ${ }^{8^{\text {TH }} \text { SEMESTER }}$SPRING 2020

FINAL TERM EXAMINATION

DATA STRUCTURE AND ALGORITHMS

| NAME | $: \quad$ ABDUL MATEEN |
| :--- | :--- | :--- |
| ID | $: \quad 13009$ |

INSTRUCTOR:
MUHAMMAD ADIL asst. PRof

DATE OF SUBMISSION:
24 / JUNE / 2020

- Attempt All Tasks.

Q\#1. (a) Sort the given list using Insertion Sort.

$$
\begin{equation*}
56,59,45,40,43,55 \tag{10}
\end{equation*}
$$

Solution:

Dry Steps:

1. For $\mathrm{j} \leftarrow 2$ to n (start of outer-for-loop)
2. key $\leftarrow \mathrm{A}[\mathrm{j}] \quad$ (temporary value)
3. $\mathrm{i} \leftarrow \mathrm{j}-1 \quad$ (counter use for while loop)
4. while (i >=1) AND (A[i] >= key) (start of inner-while-loop)
a. $A[i+1] \leftarrow A[i]$
b. $\mathrm{i} \leftarrow \mathrm{i}-1$
end of inner-while-loop
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow k e y$
6. Exit

Step \# 1: \quad for $\mathrm{j} \leftarrow 2$ to 6
Step \# 2: \quad key $\leftarrow A[j]$
$\mathrm{key} \leftarrow \mathrm{A}[2]$
key $\leftarrow 59$
Step \# 3: $\quad \mathrm{i} \leftarrow \mathrm{j}-1$
$\mathrm{i} \leftarrow 2-1$
$\mathrm{i} \leftarrow 1$
Step \# 4: while ($\mathrm{i}>=1$) AND (A[i] >= key) (start of inner-while-loop) $(1>=1) \quad / /$ condition is true AND
($\mathrm{A}[1]>=59$)
$(56>=59) \quad / /$ condition is false
So, while loop gets terminated
end of inner while loop
Step \# 5: $\quad A[i+1] \leftarrow$ key
$\mathrm{A}[1+1] \leftarrow k e y$
$\mathrm{A}[2] \leftarrow 59$
$56,59,45,40,43,55$

Step \# 1: \quad for $\mathrm{j} \leftarrow 3$
Step \# 2: \quad key $\leftarrow \mathrm{A}[\mathrm{j}]$
key $\leftarrow \mathrm{A}[3]$
key $\leftarrow 45$
Step \# 3: $\quad i \leftarrow j-1$
$\mathrm{i} \leftarrow 3-1$
$\mathrm{i} \leftarrow 2$
Step \# 4: while (i >= 1) AND (A[i] >= key) (start of inner-while-loop)

$$
\begin{aligned}
& (2>=1) \quad / / \text { condition is true } \\
& \text { AND }
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{A}[2]>=45) \\
& (59>=45) \quad \text { //condition is true }
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\begin{aligned}
\mathrm{A}[2+1] \leftarrow \mathrm{A}[2] \\
\mathrm{A}[3] \leftarrow \mathrm{A}[2] \\
\mathbf{5 6 , 5 9}, \mathbf{5 9}, \mathbf{4 0}, \mathbf{4 3}, \mathbf{5 5}
\end{aligned}
$$

b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 2-1$
$\mathrm{i} \leftarrow 1$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(1>=1)
$$

AND

$$
\begin{aligned}
& (\mathrm{A}[1]>=45) \\
& (56>=45)
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\mathrm{A}[1+1] \leftarrow \mathrm{A}[1]
$$

$$
\mathrm{A}[2] \leftarrow \mathrm{A}[1]
$$

56, 56, 59, 40, 43, 55
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 1-1$
$\mathrm{i} \leftarrow 0$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key) (start of inner-while-loop)

$$
(0>=1) \quad / / \text { condition is false }
$$

So, while loop gets terminated
end of inner while loop
Step \# 5: $\quad A[i+1] \leftarrow k e y$
$\mathrm{A}[0+1] \leftarrow k e y$
$\mathrm{A}[1] \leftarrow 45$
45, 56, 59, 40, 43, 55
Step \# 1: \quad for $\mathrm{j} \leftarrow 4$
Step \# 2: \quad key $\leftarrow \mathrm{A}[\mathrm{j}]$
key $\leftarrow \mathrm{A}[4]$
key $\leftarrow 40$
Step \# 3: $\quad i \leftarrow j-1$
$\mathrm{i} \leftarrow 4-1$
$\mathrm{i} \leftarrow 3$
Step \# 4: while (i >=1) AND (A[i] >= key) (start of inner-while-loop)

$$
\begin{aligned}
& (3>=1) \quad / / \text { condition is true } \\
& \text { AND }
\end{aligned}
$$

$$
(\mathrm{A}[3]>=40)
$$

$$
(59>=40) \quad / / \text { condition is true }
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\mathrm{A}[3+1] \leftarrow \mathrm{A}[3]
$$

$$
\mathrm{A}[4] \leftarrow \mathrm{A}[3]
$$

$45,56,59,59,43,55$
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 3-1$
$\mathrm{i} \leftarrow 2$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(2>=1)
$$

AND

$$
\begin{aligned}
& (\mathrm{A}[2]>=40) \\
& (56>=40)
\end{aligned}
$$

//condition is true
So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$
$\mathrm{A}[2+1] \leftarrow \mathrm{A}[2]$
$\mathrm{A}[3] \leftarrow \mathrm{A}[2]$
$45,56,56,59,43,55$
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 2-1$
$\mathrm{i} \leftarrow 1$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(1>=1)
$$

AND

$$
\begin{aligned}
& (\mathrm{A}[1]>=40) \\
& (45>=40)
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\mathrm{A}[1+1] \leftarrow \mathrm{A}[1]
$$

$$
\mathrm{A}[2] \leftarrow \mathrm{A}[1]
$$

$45,45,56,59,43,55$
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 1-1$
$\mathrm{i} \leftarrow 0$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)
(start of inner-while-loop)
($0>=1$)
//condition is false
So, while loop gets terminated
end of inner while loop
Step \# 5: $\quad A[i+1] \leftarrow k e y$
$\mathrm{A}[0+1] \leftarrow k e y$
$\mathrm{A}[1] \leftarrow 40$
$40,45,56,59,43,55$
Again go to check for loop condition
Step \# 1: \quad for $\mathrm{j} \leftarrow 5$
Step \# 2: \quad key $\leftarrow \mathrm{A}[\mathrm{j}]$
key $\leftarrow \mathrm{A}[5]$
key $\leftarrow 43$
Step \# 3: $\quad i \leftarrow j-1$
$\mathrm{i} \leftarrow 5-1$
$\mathrm{i} \leftarrow 4$
Step \# 4: while (i >=1) AND (A[i] >= key) (start of inner-while-loop)

$$
\begin{aligned}
& (4>=1) \quad / / \text { condition is true } \\
& \text { AND }
\end{aligned}
$$

$$
\begin{aligned}
& (\mathrm{A}[4]>=43) \\
& (59>=43) \quad \text { //condition is true }
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\mathrm{A}[4+1] \leftarrow \mathrm{A}[4]
$$

$$
\mathrm{A}[5] \leftarrow \mathrm{A}[4]
$$

$40,45,56,59,59,55$
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 4-1$
$\mathrm{i} \leftarrow 3$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(3>=1)
$$

AND

$$
(\mathrm{A}[3]>=43)
$$

$$
(56>=43) \quad / / \text { condition is true }
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$
$\mathrm{A}[3+1] \leftarrow \mathrm{A}[3]$
$\mathrm{A}[4] \leftarrow \mathrm{A}[3]$
$40,45,56,56,59,55$
b) i \leftarrow i-1
$\mathrm{i} \leftarrow 3-1$
$\mathrm{i} \leftarrow 2$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(2>=1)
$$

AND

$$
\begin{aligned}
& (\mathrm{A}[2]>=43) \\
& (45>=43)
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\begin{aligned}
& \mathrm{A}[2+1] \leftarrow \mathrm{A}[2] \\
& \mathrm{A}[3] \leftarrow \mathrm{A}[2]
\end{aligned}
$$

$40,45,45,56,59,55$
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 2-1$
$\mathrm{i} \leftarrow 1$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

($\mathrm{A}[1]>=43$)
$(40>=40) \quad / /$ condition is false
So, while loop gets terminated
end of inner while loop
Step \# 5: $\quad A[i+1] \leftarrow$ key
$\mathrm{A}[1+1] \leftarrow k e y$
$\mathrm{A}[2] \leftarrow 43$
$40,43,45,56,59,55$
Again go to check for loop condition
Step \# 1: \quad for $\mathrm{j} \leftarrow 6$
Step \# 2: \quad key $\leftarrow \mathrm{A}[\mathrm{j}]$
key $\leftarrow \mathrm{A}[6]$
key $\leftarrow 55$
Step \# 3: $\quad \mathrm{i} \leftarrow \mathrm{j}-1$
$\mathrm{i} \leftarrow 6-1$
$\mathrm{i} \leftarrow 5$
Step \# 4: while (i >=1) AND (A[i] >= key) (start of inner-while-loop)

$$
(5>=1)
$$

//condition is true
AND

$$
\begin{aligned}
& (\mathrm{A}[5]>=55) \\
& (59>=55) \quad \text { //condition is true }
\end{aligned}
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$

$$
\mathrm{A}[5+1] \leftarrow \mathrm{A}[5]
$$

$$
\mathrm{A}[6] \leftarrow \mathrm{A}[5]
$$

$40,43,45,56,59,59$
b) i $\leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 5-1$
$\mathrm{i} \leftarrow 4$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)
(4>=1)
//condition is true
AND

$$
(\mathrm{A}[4]>=55)
$$

$$
(56>=55)
$$

So, while loop gets executed
a) $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$
$\mathrm{A}[4+1] \leftarrow \mathrm{A}[4]$
$\mathrm{A}[5] \leftarrow \mathrm{A}[4]$
40, 43, 45, 56, 56, 59
b) $\mathrm{i} \leftarrow \mathrm{i}-1$
$\mathrm{i} \leftarrow 4-1$
$\mathrm{i} \leftarrow 3$
again go to check while loop condition
while ($\mathrm{i}>=1$) AND (A[i] >= key)

$$
(3>=1)
$$

AND

$$
(\mathrm{A}[3]>=55)
$$

$$
(45>=55) \quad / / \text { condition is false }
$$

So, while loop gets terminated
end of inner while loop
Step \# 5: $\quad A[i+1] \leftarrow k e y$
$\mathrm{A}[3+1] \leftarrow k e y$
$\mathrm{A}[4] \leftarrow 55$
$40,43,45,55,56,59$
Again go to check for loop condition
$\mathrm{j} \leftarrow 7$ to $6 / /$ condition is false
so for loop also gets terminated
program will exit here
Q\#2. Construct Binary Trees from given list of numbers and then verify the tree.
$25,15,35,17,33,36,25,13,15,40,38,42,20$

Verification using In-order-traversal:
$42,40,38,36,35,33,25,25,20,17,15,15,13$

Q\#3. Construct Binary Trees from given Mathematical Expressions:

i. $\mathrm{H}+\mathrm{G}^{*} 2-\left(\mathrm{F}^{\wedge} \mathrm{M}\right)$

ii. $A * D+T^{\wedge} B-R$

Q\#4. Apply all the three Binary Tree Traversal Techniques on each of the Tree constructed in Q\#3.
(06 + 06)
i. $\quad \mathrm{H}+\mathrm{G} * 2-\left(\mathrm{F}^{\wedge} \mathrm{M}\right)$
a. In-Order-Traversal:
$>$ Visit left-sub tree
> Process Parent node
$>$ Visit right-sub tree
H, +, G, *, 2, -, F, ^, M
b. Pre-Order-Traversal:
> Process parent node
$>$ Visit left-sub tree
$>$ Visit right-sub tree
$+, \mathbf{H},-,{ }^{*}, \mathbf{G}, \mathbf{2 ,}$ ^, F, M
c. Post-Order-Traversal:
$>$ Visit left-sub tree
$>$ Visit right-sub tree
$>$ Process parent node
H, G, 2, *, F, M, ^, -, +
ii. $\quad A * D+T^{\wedge} B-R$
a. In-Order-Traversal:
$>$ Visit left-sub tree
$>$ Process Parent node
$>$ Visit right-sub tree
$\mathrm{A}, *, \mathrm{D},+, \mathbf{T},{ }^{\wedge}, \mathrm{B},-, \mathbf{R}$
b. Pre-Order-Traversal:
$>$ Process parent node
$>$ Visit left-sub tree
$>$ Visit right-sub tree
$+, *, A, D,-, \wedge, \mathbf{T}, \mathbf{B}, \mathbf{R}$
c. Post-Order-Traversal:
$>$ Visit left-sub tree
$>$ Visit right-sub tree
> Process parent node

$$
\begin{equation*}
\mathbf{A}, \mathbf{D}, *, \mathbf{T}, \mathbf{B}, \wedge, \mathbf{R},-,+ \tag{08}
\end{equation*}
$$

Q\#5. Fill in the blanks.
i. Elements of a Tree are called nodes.
ii. The graphical line drawn between Nodes of a Tree is called edge.
iii. Level Number of a Root is zero.
iv. All the nodes with same Level Number belong to same generation.
v. The Left-Most Child Node is oldest brother Node.
vi. The Right-Most Child Node is youngest brother Node.
vii. A Tree is a non-linear Data Structure.
viii. An Ordered Set of Ordered Trees is called a forest.

