Student Name: Aamir Saleem

Student ID: 12290

Summer-20 Final Term Assignment

Subject: Discrete Structure

Date: 30 ${ }^{\text {th }}$ Sep 2020
Instructor: Sir Daud

Note: Attempt all Questions. All questions carry equal marks.

Question No. 1:

a) Find the 36th term of the arithmetic sequence whose 3 rd term is 7 and $8^{\text {th }}$ term is 17.

Answer:

Step 1

Formulating the sequence
We Assume ' a ' as the $1^{\text {st }}$ term $\&$ let ' d ' be the common difference of the arithmetic sequence,
$a_{n}=a+(n-1) d$
$3^{\text {rd }}$ Term $=$
$a_{3}=a+(3-1) d$
$8^{\text {th }}$ Term $=$
$a_{8}=a+(8-1) d$
It is given that
$\mathrm{a}_{3}=7$,
$\mathrm{a}_{8}=17$
Therefore;
7= a+2d ----------- eq(i)
17= a+7d--------- eq(ii)

Step2

Subtraction \& Substitution
Subtracting eq(i) from eq(ii) to obtain desired values for 'd'

$$
17=a+7 d
$$

- $7=a+2 d$

10=5d---------eq(iii)
Now Putting eq(iii) in eq(i) to obtain desired values for ' a '
$7=a+2(2)$
So we get $a=3$

Step 3

Finding $36^{\text {th }}$ item from obtained values
$a_{n}=a+(n-1) d$
Putting values of a \& d
$a_{n}=3+(n-1) 2$
So, we get;
$\mathrm{a}_{36}=3+(36-1) 2$
$\mathrm{a}_{36}=3+70$

Hence;
$\mathrm{a}_{36}=73$ (Answer)

Question No. 2:

Find $\boldsymbol{f o g}(\mathbf{x})$ and $\boldsymbol{g o f}(\mathbf{x})$ of the functions $f(x)=2 x+3$ and $g(x)=-x^{2}+5$

Answer:

Given Values:
$(f o g)(x)=2 x+6$
(gof)(x) $=2 x+3$
$f(x)=2 x$
$g(x)=x+3$
Finding (fog) (x)
$(\mathrm{fog})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x})$
$=f(x+3)$
$=2(x+3)$
$=2 x+6$
So, we get $(\mathbf{f o g})(\mathbf{x})=\mathbf{2 x + 6}$ Answer
Now finding (gof)(x)
(gof) $(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x})$
$=g(2 x)$
$=2 x+3$
So, we get (gof)(\mathbf{x}) $=\mathbf{2 x + 3}$

Question No. 3:
Prove by mathematical induction that the statement is true for all integers $n \geq 1$ (10)

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution:

We know that $\mathrm{P}(1)$ is true For $\mathrm{n}=1$
L.H.S of $P(1)=1^{2}=1$
R.H.S of $P(1)=\frac{1(1+1)(2(1)+1)}{6}$

$$
=\frac{(1)(2)(3)}{6}=\frac{6}{6}=1
$$

Hence proved that L.H.S is equal to R.H.S

Now let's suppose $P(K)$ is true for integer $k \geq 1$

$$
1^{2}+2^{2}+3^{2}+\ldots .+\mathrm{k}^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Now proving $\mathrm{P}(\mathrm{k}+1)$ is true;
$1^{2}+2^{2}+3^{2}+\ldots .+(k+1)^{2}=\frac{(k+1)(k+1+1)(2(k+1)+1)}{6}$
Now considering L.H.S of above equation;

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots . .+(\mathrm{k}+1)^{2} & =1^{2}+2^{2}+3^{2}+\ldots . .+\mathrm{k}^{2}+(\mathrm{k}+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)}{6}+(k+1) \\
& =(k+1) \frac{k(2 k+1)+6(k+1)}{6} \\
& =k+1 \frac{2 k^{2}+k+6 k+6}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right.}{6} \\
& =\frac{(k+1)(k+1+1)(2(k+1)+1)}{6} \text { Answer }
\end{aligned}
$$

Question No. 4:

Discuss different types of relations with example in detail.

Abstract

Answer: Relations: A connection between the elements of two or more sets is Relation. The sets must be non-empty. A subset of the Cartesian product also forms a relation R. A relation may be represented either by Roster method or by Set-builder method. Relations may exist between objects of the same set or between objects of two or more sets.

Domain \& Range: If there are two sets A and B, and relation R have order pair (x, y), then -

The domain of $R, \operatorname{Dom}(R)$, is the set $\{x \mid(x, y) \in R$ for some y in $B\}$

The range of $R, \operatorname{Ran}(R)$, is the set $\{y \mid(x, y) \in R$ for some x in $A\}$

Types of Relations:

1. Empty Relation: If no element of set X is related or mapped to any element of X, then the relation R in A is an empty relation, i.e, $R=\Phi$.
For Example; Think of an example of set A consisting of only 100 hens in a poultry farm. Is there any possibility of finding a relation R of getting any elephant in the farm? No! R is a void or empty relation since there are only 100 hens and no elephant. An Empty set is represented by ' Φ '
2. Symmetric Relation: A relation R on a set A is said to be symmetric if $(a, b) \in R$ then $(b, a) \in R$, for all $a \& b \in A$. R is not symmetric if there are elements a and b in A such that $(a, b) \in R$, but $(b, a) \in R$.
Example: Let $A=\{1,2,3,4\}$ and define relations R1, R2, R3, and R4 on A as follows.
R1 $=\{(1,1),(1,3),(2,4),(3,1),(4,2)\}$
$R 2=\{(2,2),(2,3),(3,4)\}$
$R 3=\{(1,1),(2,2),(3,3),(4,3),(4,4)\}$
$R 2$ is not symmetric, because $(2,3) \in R 3$ but $(3,2) \notin R 3$.
3. Transitive Relation: Let R be a relation on a set A. R is transitive if and only if for all a, $b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$. if any one element is related to a second and that second element is related to a third, then the first is related to the third.
For Example $A=\{1,2,3\}$ all three elements in the set A are related to each other.
4. Universal Relation: A universal (or full relation) is a type of relation in which every element of a set is related to each other. Consider set $A=\{a, b, c\}$. Now one of the universal relations will be $R=\{x, y\}$ where, $|x-y| \geq 0$. For universal relation, $R=A \times A$
5. Inverse Relation: Inverse relation is seen when a set has elements which are inverse pairs of another set. For example, if set $A=\{(a, b),(c, d)\}$, then inverse relation will be $R-1=\{(b, a),(d, c)\}$. So, for an inverse relation, $R-1=\{(b, a):(a, b) \in R\}$

Question No. 5

Suppose that an automobile license plate has three letters followed by three digits.

Answer:

a. How many different license plates are possible?
\Rightarrow Total number of letters= 26
Total Number of possible digits=10
Combination of all letters for each row= 26
Combination of all digits for each row= 10

By using product rule, we find all possible combinations.
$26 \times 26 \times 26 \times 10 \times 10 \times 10=17,576,000$
So, the number of possible plates is $\mathbf{1 5 , 5 7 6 , 0 0 0}$
b. How many license plates could begin with \mathbf{A} and end on 0 .
\Rightarrow We find the possibility of first letter as A \& last as 0 by applying the product rule, the number of combinations for $1^{\text {st }}$ and last digit will be set to 1 as for the rest, they will be the same.
$1 \times 26 \times 26 \times 10 \times 10 \times 1=67,600$
So, the number of possibilities that A is $1^{\text {st }} \& 0$ is last will be $\mathbf{6 7 , 6 0 0}$.
c. How many license plates begin with PQR
\Rightarrow We find the possibility of PQR by setting the number of combinations on the letters row to be set to ' 1 ' because we only want the desired letters to appear on the number plate i.e $1 \times 1 \times 1 \times 10 \times 10 \times 10=1000$

So, the number of possibilities where PQR will affirmatively appear on the plate are 1000.

