Department of Electrical Engineering Assignment Date: 13/04/2020 <u>Course Details</u>						
Course Title: Instructor:	Digital Signal Processing Sir Pir Meher	Module: Total Marks:	<u>6th</u> 30			
Name:	<u>Student Details</u> Bakht Zaman Gohar	Student ID:	13678			

	(a)	Consider the following analog signal	Marks 5		
			CLO 1		
		$x_a(t) = 3\cos 100\pi t + 4\sin 200\pi t$			
		i. Determine the minimum sampling rate required to avoid aliasing. ii. Suppose that the signal is sampled at the rate $F_s = 100Hz$. What is the discrete-time signal obtained after sampling? Also explain the effect of this			
		sampling rate on the newly generated discrete time signal. iii. What is the analog signal $y_a(t)$ we can reconstruct from the samples if we use ideal interpolation?			
	(b)	Consider a discrete time signal which is given by	Marks 5		
		$x(n) = \begin{cases} 0.5^n , n \ge 0\\ 0, n < 0 \end{cases}$	CLU I		
Q1.		This is signal is sampled at the rate $F_s = 2Hz$.			
		 i. Draw the sampled signal. ii. The samples of the signals are intended to carry 3 bits per sample. Determine the quantization level and quantization resolution to quantized the sampled signal achieved in part i. 			
		 Perform the process of truncation and rounding off on all the values of the sampled signal and find the quantization error for each of the sampled data. Express your answer in tabular form. 			
	(a)	Determine the response of the system to the following input signal with given impulse response	Marks 5 CLO 2		
Q2.		$x[n] = \left\{ 2, \frac{1}{\uparrow}, -2, 3, -4 \right\} , h[n] = \left\{ \frac{3}{\uparrow}, 1, 2, 1, 4 \right\}$			

	(b)	Compute the convolution y(n) of the following signal	Marks 5
		$x(n) = \begin{cases} \alpha^{n+1}, -3 \le n \le 5\\ 0, & elsewhere \end{cases}$	CLO 2
		$h(n) = \begin{cases} 2^n, & 0 \le n \le 4\\ 0, & elsewhere \end{cases}$	
		Determine the z- transform of the following signals and also sketch its Region of Convergence (ROC).	Marks 10 CLO 2
Q3.		i. $x(n) = \begin{cases} (\frac{1}{4})^n, & n \ge 0\\ (\frac{1}{3})^{-n}, & n < 0 \end{cases}$	
		ii. $x(n) = \begin{cases} (\frac{1}{2})^n - 3^n, & n \ge 0\\ 0, & elsewhere \end{cases}$	

NAME: BAKHT ZIMAN GROMAR
SEMESTER: 6
MID TERMA
D1: Part: 0
KA(H) = 3 cos 100xt + 4 sin 200xt
MID TERMA
D1: Part = 0
Ka(H) = 3 cos 100xt + 4 sin 200xt
Va(H) = 3 cos 100xt + 4 sin 200xt
Va(H) = 3 cos 100xt + 4 sin 200xt
We Know that

$$T = \frac{1}{2x}$$

So, $T = \frac{100x}{2x} = \frac{100}{2}$
 $T = 50H =$
 $T = 200 H =$
 $A = 50H =$
 $A = 100H =$
 $A = 100H =$
 $A = 100H =$
 $A = 100H =$
 $A = 200x = 200x$
 $A = 100H =$
 $A = 200x = 200x$

$$ID * Solution:
Ka(t) = 3 cos 100 Kt + 4 sin 200 Kt
the of the fiven signal is sampled
by $f_s = 100$ Ht
then,
 $K(M) = Ka(MT)$
So, when we sampled the signal
 $t = 3 cos(1 GOK) n + 4 sin(200K) n$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $M(M) = 3 cos NR + 4 sin 2Kn$
 $M(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos NR + 4 sin 2Kn$
 $K(M) = 3 cos 2008) (3) n + 4 sin 2Kn$
 $K(M) = 3 cos 2008) (3) n + 4 sin 2Kn$
 $K(M) = 3 cos 2008 (3) n + 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2008 t$
 $Sampling is Ka(t) = 3 cos 2000 t to 5 t 4 sin 2000 t$$$

$$W_{1} = 2\pi F_{1}$$

$$W_{2} = 2\pi (s_{0})$$

$$W_{2} = 2\pi (s_{0})$$

$$W_{2} = 100\pi$$

$$W_{3} = 0 CosW_{1} + 4 SinW_{2} + 4 SinW_{2}$$

P2:- (Part-a) Determine the response of the
following input signal with fire
impulse response.

$$x[x] = \int_{2}^{2} \int_{1}^{2} \int_{-2,3}^{3} -\psi[,h[h]] = \{\frac{3}{2}, 1, 2, 1, 4]$$

$$x[x] = \int_{1}^{2} \int_{1}^{3} \int_{1}^{3} \int_{1}^{4} \int_{1}^{4} \int_{1}^{4} h(0)$$

$$x[x] = \int_{1}^{2} \int_{1}^{4} \int_{1}^{3} \int_{1}^{4} \int_{1}^{4} h(0)$$
Now we find the folded signal $k[-k]$

$$h[-k] = \int_{1}^{4} \int_{1}^{2} \int_{1}^{4} \int_{1}^{3} \int_{1}^{4} \int_{1}^{4} h(0) h(0)$$

$$= 2x1 + 1x3$$

$$= 2+5$$

$$y(0) = 5$$

$$For n = 1$$

$$f(1) = 1$$

$$For n = 3$$

$$\int_{-1}^{1} \frac{1}{\sqrt{2} + \frac{1}{$$

$$For n=5$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} h(5-h)$$

$$f(5) = \int_{k=1}^{2} h(h)h(5-h)$$

$$= h(2)h(4) + h(2)h(2) + 3(3)h(3) + 0+0$$

$$= h(2)(h) + h(2)h(2) + (h(4)(2))$$

$$= h(2)(h) + h(2)(2) + (h(4)(2))$$

$$= h(2)h(2) + h(3)h(3) + 0+0$$

$$= h(2)h(3)h(3) + 0+0$$

$$= h(2)h(3)h(3) + 0+0$$

$$= h(2)h(3)h(3) + 0+0$$

$$= h(2)h(3)h(3) + 0+0$$

$$= h(2)h(3)h$$

1 $Y(n) = \{ \alpha^{-2}, 2\alpha^{-2} + \alpha^{-1}, 4\alpha^{-2} + 2\alpha^{-1} + 1, 8\alpha^{-2} + 4\alpha^{-1} \}$ $+2+\alpha$, $16\alpha^{-2}+8\alpha^{-1}+4+2\alpha+\alpha^{2} = 16\alpha^{-1}$ $+8+4x+2a^{2}+d^{3}=16+8x+4a^{2}+2a^{3}+a^{4},$ 26x+8x2+4x3+2x4+x5, =16x2+8x3+4x4 + 2x5 + x6, 16x3 + 8x4 + 4x5 + 2x6, 16x4+ 8x3+4x6, 16x5+8x6, 16x6] 12

Production the sector is form of following
signals of also electric its region of the
convergence (ac)

$$(f_{a}) = (f_{a})^{n}, so = (f$$

$$= \frac{2}{(2-\frac{1}{2}, 2-\frac{1}{2}, 4-\frac{1}{2}, 4-\frac{1}{2}, 4-\frac{1}{2}, 5-\frac{1}{2}, 1}{(2-\frac{1}{2}, 2-\frac{1}{2})(2-\frac{1}{2}, 2-\frac{1}{2})}$$

$$= \frac{2-\frac{1}{2}, 5-\frac{1}{2}}{(2-\frac{1}{2}, 2-\frac{1}{2})(2-\frac{1}{2}, 2-\frac{1}{2})}$$

$$= \frac{2-\frac{1}{2}, 5-\frac{1}{2}}{(2-\frac{1}{2}, 2-\frac{1}{2})(2-\frac{1}{2}, 2-\frac{1}{2})}$$

$$\Rightarrow e^{-\frac{1}{2}, 5-\frac{1}{2}} = \frac{2-\frac{1}{2}, 5-\frac{1}{2}}{(2-\frac{1}{2}, 2-\frac{1}{2})(2-\frac{1}{2}, 2-\frac{1}{2})}$$

$$\Rightarrow e^{-\frac{1}{2}, 5-\frac{1}{2}} = \frac{1-\frac{1}{2}, 5-\frac{1}{2}}{(2-\frac{1}{2}, 2-\frac{1}{2})(2-\frac{1}{2}, 2-\frac{1}{2})}$$

