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(A): Aims and Objectives of the Paper 

 

The aim of this particular research article is to enhance the quality of noisy speech 

signals by reducing/suppressing real-time background noise signals and to improve the 

perceptual speech quality and intelligibility using regression based Deep Neural Network 

(DNN) speech enhancement mechanism. The objectives of the paper are two folds: 

i. Reduce/suppress the background noise signals in such a way that output speech 

signals has less distortion in order to ensure acceptable perceptual speech quality.  

ii. The reduction/suppression of the background noise signals is done in such a way 

that the vital contents in the output speech signals are well maintained to ensure 

the speech intelligibility.    

Although, it is a difficult task to improve both parameters simultaneously but the paper 

has proposed a novel and effective speech enhancement method based on regression 

based DNN that has the ability to address both the objectives by adapting several new 

techniques.   

 

(B): Research Questions:  

 

After detail reading the research paper, the authors of the research have addressed the 

following questions which are summarized as:  

i. What will be a more robust speech enhancement method that can improve 

the perceptual speech quality and intelligibility simultaneously? 

ii. What other techniques along with the previously adapted approaches must be 

followed in order to achieve a good speech enhancement? 

iii. DNNs are alternatives to the conventional speech enhancement methods? 

iv. How large must be database(s) to train the DNN for efficient results? 

v. The results obtained with the proposed DNN method are comparable with 

conventional and other DNN methods? 

(C) Verification Methods and Software Tools 
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Before providing the verification methods used in the paper to access the regression 

based DNN speech enhancement, the methodology of evaluation is summarized below:  

A TIMIT speech database is used in the experiments which is composed of 4620 speech 

utterances. 104 background noise sources are selected from the AURORA database. The 

create a simulated noisy environment similar to the real environments, the clean speech 

utterances are mixed with background noise sources at -5 dB, 0 dB, 5 dB, 10 db, 15 dB 

and 20 dB, respectively. With this setting a large training data is achieved which has 

duration about 2500 hours during playback. The proposed method is evaluated against 

the conventional speech enhancement method, named Log Minimum Means Square 

Error Estimator (L-MMSE). Using the above methodology, the following verification 

methods are utilized to evaluate the performance.  

i. Perceptual Evaluation of Speech Quality (PESQ): This verification method is 

used to verify the results in terms of perceptual speech quality, one of the 

objectives of the paper. 

ii. Segmental Signal-to-Noise Ratio (SSNR): This verification method is adapted 

to verify the suppression of background noise in enhanced speech signals, the 

main aim of the speech enhancement.  

iii. Log Spectral Distance (LSD): This verification method is used to verify the 

preservation of speech contents in the speech signal which is linked directly to 

the speech intelligibility, one of the objectives of the paper.  

iv. Spectro-Temporal Analysis: This powerful analysis (verification method) is 

used to analyze the residual background noise signals and speech distortion in 

the enhanced speech signals.     

 

The simulation platform (Software Tool) used in this paper is MATLAB Programming. 

 

(D): Conclusions and Outcomes of the Methods 

  

After detail readings, the authors of the paper concluded the following outcomes: 

i. A novel regression based Deep Neural Network speech enhancement is 

proposed and implemented in the paper which is potential alternative to the 

conventional speech enhancement methods.  

ii. It is concluded that DNN are very powerful to cope the non-stationary 

background noises in real-time applications of speech processing. 

iii. Two novel techniques beside DNN, Global Variance Equalization and Noise 

Aware Training are adopted in the proposed method which concluded to have 

potential impacts on the overall perceptual speech quality and intelligibility. 

iv. It is concluded that with large training data, the DNN based speech 

enhancement method outperformed the conventional methods and other DNN 

which are trained on less data. 
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v. The proposed method significantly improved the perceptual speech quality 

and intelligibility simultaneously which is supposed to be a challenging task in 

the literature.  

vi. It is concluded that regression based DNN approach can deal large data in 

different languages and different varying conditions. 

 

(E): Future Research Directions 

 

The future directions of the research as discussed in the paper are summarized below:  

i. Firstly, the speech diversity will be increased by using clean speech signals data 

from the affluent and rich collections of speech materials encircling additional 

languages and speakers of both genders.  

ii. Secondly, a number of factors are involved in the robust designing the training 

dataset. By utilizing various principles in the experiments, robust acoustic 

features will be analyzed and designed to alleviate the need of enormous training 

data and to sustain the high-quality generalization capabilities of the regression 

based DNN frameworks.   

iii. Thirdly, robust acoustic features including Gammatone Filterbank Power Spectra 

(GFPS), Multi-Resolution Cochleagram Feature (MRCF) will be adopted in the 

proposed regression based DNN to improve the performance regarding perceptual 

speech quality and intelligibility.  

iv. Finally, although noise aware training is adopted in the proposed method, more 

dynamic noise variation approaches will also be implemented and examined to 

improve the footpaths of non-stationary background noise signals. 

 

(F): Referencing Style 

 

The paper is selected from the IEEE Journal; IEEE/ACM Transactions on Audio, 

Speech, and Language Processing, which has its own standard referencing style, IEEE 

Reference Style.  

 

(G): Selected Paper Reference styles 

 

The selected research paper is represented in various referencing Styles as required. 
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Modern Language Association (MLA) Style 
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A Regression Approach to Speech Enhancement
Based on Deep Neural Networks
Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, Fellow, IEEE

Abstract—In contrast to the conventional minimum mean
square error (MMSE)-based noise reduction techniques, we pro-
pose a supervised method to enhance speech by means of finding a
mapping function between noisy and clean speech signals based on
deep neural networks (DNNs). In order to be able to handle a wide
range of additive noises in real-world situations, a large training
set that encompasses many possible combinations of speech and
noise types, is first designed. A DNN architecture is then employed
as a nonlinear regression function to ensure a powerful modeling
capability. Several techniques have also been proposed to improve
the DNN-based speech enhancement system, including global
variance equalization to alleviate the over-smoothing problem of
the regression model, and the dropout and noise-aware training
strategies to further improve the generalization capability of DNNs
to unseen noise conditions. Experimental results demonstrate that
the proposed framework can achieve significant improvements
in both objective and subjective measures over the conventional
MMSE based technique. It is also interesting to observe that the
proposed DNN approach can well suppress highly nonstationary
noise, which is tough to handle in general. Furthermore, the re-
sulting DNN model, trained with artificial synthesized data, is also
effective in dealing with noisy speech data recorded in real-world
scenarios without the generation of the annoying musical artifact
commonly observed in conventional enhancement methods.

Index Terms—Deep neural networks (DNNs), dropout, global
variance equalization, noise aware training, noise reduction, non-
stationary noise, speech enhancement.

I. INTRODUCTION

I N RECENT years, single-channel speech enhancement has
attracted a considerable amount of research attention be-

cause of the growing challenges in many important real-world
applications, including mobile speech communication, hearing
aids design and robust speech recognition [1]. The goal of
speech enhancement is to improve the intelligibility and quality
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of a noisy speech signal degraded in adverse conditions [2].
However, the performance of speech enhancement in real
acoustic environments is not always satisfactory.
Numerous speech enhancement methods were developed

over the past several decades. Spectral subtraction [3] subtracts
an estimate of the short-term noise spectrum to produce an
estimated spectrum of the clean speech. In [4], the iterative
wiener filtering was presented using an all-pole model. A
common problem usually encountered in these conventional
methods (e.g., [3], [4]) is that the resulting enhanced speech
often suffers from an annoying artifact called “musical noise”
[5]. Another notable work was the minimum mean-square
error (MMSE) estimator introduced by Ephraim and Malah
[6]; their MMSE log-spectral amplitude estimator [7] could
result in much lower residual noise without further affecting the
speech quality. An optimally-modified log-spectral amplitude
(OM-LSA) speech estimator and a minima controlled recur-
sive averaging (MCRA) noise estimation approach were also
presented in [8], [9]. Although these traditional MMSE-based
methods are able to yield lower musical noise (e.g., [10], [11]),
a trade-off in reducing speech distortion and residual noise
needs to be made due to the sophisticated statistical properties
of the interactions between speech and noise signals. Most of
these unsupervised methods are based on either the additive
nature of the background noise, or the statistical properties of
the speech and noise signals. However they often fail to track
non-stationary noise for real-world scenarios in unexpected
acoustic conditions.
Considering the complex process of noise corruption, a non-

linear model, like the neural networks, might be suitable for
modeling the mapping relationship between the noisy and clean
speech signals. Early work on using shallow neural networks
(SNNs) as nonlinear filters to predict the clean signal in the
time or frequency domain has been proposed (e.g., [12]–[14]).
In [15], the SNN with only one hidden layer using 160 neurons
was proposed to estimate the instantaneous signal-to-noise ra-
tios (SNRs) on the amplitude modulation spectrograms (AMS),
and then the noise could be suppressed according to the esti-
mated SNRs of different channels. However, the SNR was esti-
mated in the limited frequency resolution with 15 channels and
it was not efficient to suppress the noise type with sharp spectral
peaks. Furthermore, the small network size can not fully learn
the relationship between the noisy feature and the target SNRs.
In addition, random initialization of the SNNs often suffered

from “apparent local minima or plateaus” [16], and the problem
would get even worse for architectures incorporating more
hidden layers [17]. A breakthrough for training deep archi-
tectures came in 2006 when Hinton et al. [18], [19] proposed

2329-9290 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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a greedy layer-wise unsupervised learning algorithm. Each
layer is pre-trained without supervision to learn a high level
representation of its input (or the output of its previous layer).
For the regression task, deep learning has been used in several
speech synthesis tasks [20], [21]. In [22], [23], stacked de-
noising autoencoders (SDAs), as one type of the deep models,
were adopted to model the relationship between clean and noisy
features, and they only explored its performance on a matching
test set. Deep recurrent neural networks (DRNNs) were also
adopted in the feature enhancement for robust speech recog-
nition [24], [25]. The generalization capacity of the DRNN
was weak if it was trained on limited noise types [24]. [25]
focused on the speech recognition evaluation for the domestic
environment of CHiME corpus [26]. However, a universal
speech enhancer to any noise environments is the goal in this
paper.
Hence, one common problem observed for neural network

based speech enhancement algorithms is the degraded per-
formance in unseen noise conditions. A simple yet effective
method to cope with the unseen noise conditions is to include
many different noise types in the training set [15], [27]. Speech
enhancement was formulated as a binary classification problem
to estimate the ideal binary mask (IBM) in [27], and demon-
strated robustness to varying background noise by training
in a wide range of acoustic conditions. However, due to the
binary nature of the IBM, as defined in computational auditory
scene analysis (CASA) [29], it offers limited improvements to
speech quality even though binary masking has been shown to
improve speech intelligibility. In [27], the frequency context
information of time-frequency units had not been explicitly uti-
lized in this classification-based speech separation framework
considering that the classifier was trained for each filter channel
separately. However, the following work presented in [28]
adopted a second DNN to capture the context information to
improve the separation performance. Another smoothed ideal
ratio mask (IRM) [30], [31] in the Mel frequency domain was
also estimated by DNNs for robust speech recognition under
seen noise types.
Recently in [32], we have proposed a regression DNN based

speech enhancement framework via training a deep and wide
neural network architecture using a large collection of heteroge-
neous training data with four noise types. It was found that the
annoying musical noise artifact could be greatly reduced with
the DNN-based algorithm and the enhanced speech also showed
an improved speech quality both in terms of objective and sub-
jective measures. The generalization capability of the approach
was also demonstrated for new speakers, and at different SNR
levels. Nonetheless the ability to handle unseen noise environ-
ments was not extensively investigated.
In this study we extend the DNN-based speech enhancement

framework to handle adverse conditions and non-stationary
noise types in real-world situations. In traditional speech en-
hancement techniques, the noise estimate is usually updated
by averaging the noisy speech power spectrum using time and
frequency dependent smoothing factors, which are adjusted
based on the estimated speech presence probability in indi-
vidual frequency bins (e.g., [8], [33]). Nonetheless, its noise
tracking capacity is limited for highly non-stationary noise

cases, and it tends to distort the speech component in mixed
signals if it is tuned for better noise reduction. In this work,
the acoustic context information, including the full frequency
band and context frame expanding, is well utilized to obtain
the enhanced speech with reduced discontinuity. Furthermore
to improve the generalization capability we include more than
100 different noise types in designing the training set for DNN
which proved to be quite effective in handling unseen noise
types, especially non-stationary noise components.
Three strategies are also proposed to further improve the

quality of enhanced speech and generalization capability of
DNNs. First, an equalization between the global variance
(GV) of the enhanced features and the reference clean speech
features is proposed to alleviate the over-smoothing issue in
DNN-based speech enhancement system. The second tech-
nique, called dropout, is a recently proposed strategy for
training neural networks on data sets where over-fitting may
be a concern [34]. While this method was not designed for
noise reduction, it was demonstrated [35] to be useful for noise
robust speech recognition and we successfully apply it to a
DNN as a regression model to produce a network that has a
good generalization ability to variabilities in the input. Finally,
noise aware training (NAT), first proposed in [35], is adopted
to improve performance.
The rest of the paper is organized as follows. We first give

an overview of our proposed speech enhancement system in
Section II. Section III elaborates the basic DNN training proce-
dure and several strategies for further improvements. A series
of experiments to assess the system performance are presented
in Section IV. Finally we summarize our findings in Section V.

II. SYSTEM OVERVIEW

A block diagram of the proposed speech enhancement frame-
work is illustrated in Fig. 1. A DNN is adopted as the map-
ping function from noisy to clean speech features. Our baseline
system [32] is constructed in two stages. In the training stage, a
DNN-based regression model was trained using the log-power
spectral features from pairs of noisy and clean speech data. The
log-power spectral features is adopted [40] since it is thought to
offer perceptually relevant parameters (e.g., [13], [14]). There-
fore, short-time Fourier analysis is first applied to the input
signal, computing the discrete Fourier transform (DFT) of each
overlapping windowed frame. Then the log-power spectra are
calculated.
In the enhancement stage, the noisy speech features are

processed by the well-trained DNN model to predict the clean
speech features. After we obtain the estimated log-power spec-
tral features of clean speech, , the reconstructed spectrum

is given by:

(1)

where denotes dimension phase of the noisy
speech. Although phase information is important in human
speech recognition [39], here, phase was extracted directly
from the noisy signal considering that our ears are insensitive
to small phase distortions or global spectral shifts [14]. How-
ever, we also pointed that the clean and noisy phases are quite
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Fig. 1. A block diagram of the proposed DNN-based speech enhancement
system.

different at low SNRs, unfortunately, it is harder to estimate
the phase. Hence, only an estimate of the magnitude of clean
speech is required here. A frame of speech signal, , can
now be derived from inverse DFT (IDFT) of the current frame
spectrum. Finally, an overlap-add method, as in [40], is used to
synthesize the waveform of the whole utterance. For the sake
of simplicity, we will omit the superscripts of , , , ,
and in following sections.
Another two modules, namely noise estimation for noise-

aware training and post-processing with global variance equal-
ization, shown in the red dashed boxes of the system block dia-
gram in Fig. 1, are proposed to improve the overall performance
of the proposed DNN-based speech enhancement system. The
dropout training strategy is also adopted to improve the gener-
alization capacity of DNNs. Details of the proposed improve-
ments are presented in Section III next.

III. DNN-BASED SPEECH ENHANCEMENT

In the following subsections, we first describe the basic
DNN training procedure used in [32] and then propose several
techniques to improve the baseline DNN system so that the
quality of the enhanced speech in matched noise conditions
can be maintained while the generalization capability to unseen
noise can be increased.

A. Basic DNN Training

The architecture adopted here is a feed-forward neural net-
work with many levels of non-linearities [51] allowing them
to represent a highly non-linear regression function that maps
noisy speech features to clean speech features. Note that the
features are all normalized to zero mean and unit variance. The
training of DNN as a regression model consists of an unsuper-
vised pre-training part and a supervised fine-tuning part as il-
lustrated in Fig. 2. The type of the hidden units is sigmoid, and
the output unit is linear. To avoid getting stuck in local minima

Fig. 2. Illustration of the basic DNN training procedure.

when training deep networks [17], [19], [42], we first pre-train
a deep generative model with the normalized log-power spectra
of noisy speech by stacking multiple restricted Boltzmann ma-
chines (RBMs) [16] as shown in the dashed blue box of Fig. 2.
Since the input feature vectors are of real-valued in our DNNs,
the first RBM in Fig. 2 is a Gaussian-Bernoulli RBM that has
one visible layer of Gaussian variables, connected to a hidden
binary layer. Then multiple Bernoulli-Bernoulli RBMs can be
stacked on top of the Gaussian-Bernoulli RBM. They are trained
layer-by-layer in an unsupervised greedy fashion to maximize
the likelihood over training samples [19]. During that proce-
dure, an objective criterion, called contrastive divergence (CD),
is used to update the parameters of each RBM [16], [18].
Then the back-propagation algorithm with the MMSE-based

object function between the normalized log-power spectral fea-
tures of the estimated and the reference clean speech is adopted
to train the DNN. In contrast to pre-training for initializing the
parameters in the first several hidden layers, the fine-tuning part
shown in Fig. 2 performs supervised training of all the parame-
ters in the network. The MMSE criterion in the log-power spec-
tral domain has shown a consistency with the human auditory
system [13]. A mini-batch stochastic gradient descent algorithm
is used to improve the following error function,

(2)

where is the mean squared error, and
denote the estimated and reference normalized log-spectral

features at sample index , respectively, with representing
the mini-batch size, being the noisy log-spectral feature
vector where the window size of context is ,
denoting the weight and bias parameters to be learned. Then the
updated estimate of and in the -th layer, with a learning
rate , can be computed iteratively in the following:

(3)
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where denoted the total number of hidden layers and
represented the output layer. is the weight decay coefficient.
And is the momentum.
During learning, a DNN is used to learn the mapping func-

tion; no assumptions are made about the relationship of noisy
speech with clean speech. It can automatically learn the com-
plicated relationship to separate speech from the noisy signals
given the sufficient training samples. Furthermore, as shown in
Fig. 2, the DNN could capture the acoustic context informa-
tion along the time axis (using multiple frames of noisy speech
as input) and along the frequency axis (using full-band spec-
trum information) by concatenating them into a long input fea-
ture vector for DNN learning while the independence assump-
tion among different dimensions was a common practice in the
Gaussian mixture model to reduce computation complexity as
in [40].

B. Post-processing with Global Variance Equalization

One of the residual error problems, namely over-smoothing,
causes a muffling effect on the estimated clean speech when
compared with reference clean speech. An equalization between
the global variance of the estimated and reference clean speech
features is proposed to alleviate this problem. Global variance
equalization here can be considered as a simple type of his-
togram equalization (HEQ), which plays a key role in density
matching [53]. In [43], it is demonstrated that the use of global
variance information could significantly improve the subjective
score in a voice conversion task.
The global variance of the estimated clean speech features is

defined as:

(4)

where is the -th component of a DNN output vector at
the -th frame and is the total number of speech frames in
the training set. The global variance of the normalized reference
clean speech features can be calculated in a similar way. Mean-
while, a dimension-independent global variance can be com-
puted as follows:

(5)

Fig. 3 shows the global variances of the estimated and reference
normalized log-power spectra of clean speech across different
frequency bins. It can be observed that the global variances of
the estimated clean speech features were smaller than those of
the reference clean speech features, indicating that the spectra
of estimated clean speech were smoothed. Moreover, this over-
smoothing problem would get even worse for the lower SNR
case. Fig. 4 presents the spectrograms of an utterance with addi-
tive white Gaussian noise (AWGN) at dB: DNNmodel
trained with 104 noise types enhanced (left), clean (middle)
and noisy (right) speech. A severe over-smoothing phenomenon

Fig. 3. The dimension-dependent and dimension-independent global variances
of the reference and estimated clean speech features on the training set.

Fig. 4. Spectrograms of an utterance tested with AWGN at 0 dB SNR: for the
DNN estimated (left), the clean (middle) and the noisy (right) speech.

could be observed. The formant peaks were suppressed, espe-
cially in the high frequency band which leads to muffled speech.
To address the over-smoothing problem, a global equalization

factor is defined as follows:

(6)

Where and represented the -th dimension
of the global variance of the reference features and the estima-
tion features, respectively. Furthermore, a dimension-indepen-
dent global equalization factor can be defined as:

(7)

Where and represented the dimension-indepen-
dent global variance of the reference features and the estimation
features, respectively.
As the input features of the DNN were normalized to zero

mean and unit variance. The output of DNN should be
transformed back as follows:

(8)

where and are the -th component of the mean and
variance of the input noisy speech features, respectively. Then
the equalization factor could be used to lift the variance of this
reconstruction signal as the post-processing:

(9)
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where could be replaced by or defined in Eqs. (6)–(7).
Since the DNN output was in the normalized log-power
spectrum domain, the multiplicative factor (with its options
and ) was just operated as a exponential factor in the linear

spectrum domain. And this exponential factor could effectively
sharpen the formant peaks of the recovered speech and suppress
the residual noise simultaneously, which could significantly im-
prove the overall listening quality demonstrated in Section IV.

C. Dropout Training

One of the challenges in designing DNN-based speech en-
hancement systems is to address possible mismatches between
the training and testing conditions, caused by different SNR
levels, speaker variabilities, noise types, etc. As for the first
two factors, we have partially tackled them in [32]. However
the mismatch in noise types is the most difficult one as there
are many kinds of complicated noise environments in the real
world. In this work, frame-wise DNN training fed with noisy
speech features with many different noise types might be a pos-
sible solution.
To better address those mismatch issues, a strategy called

“dropout” [34] could also be adopted to further improve the gen-
eralization capability of the DNN. In the DNN training, dropout
randomly omits a certain percentage (e.g., ) of the neurons in
the input and each hidden layer during each presentation of the
sample for each training sample, which can be treated as model
averaging to avoid the over-fitting problem. This prevents com-
plex co-adaptations wherein the activations of multiple nodes
are highly correlated [34]. Since the frequency bins of each
sample are randomly omitted, and each higher-layer neuron also
gets input from a random collection of the lower-layer neurons,
it indeed destroys the specific relationship in noisy speech by
introducing perturbations.
This operation might cause the performance degradation for

matching noise types, while it could improve the robustness in
mismatched cases, especially for non-stationary noises not seen
in the training data. At the enhancement stage, the DNN dis-
counts all the weights involved in the dropout training by ,
instead of using a random combination of the neurons at each
hidden layer [35].

D. Noise-Aware Training (NAT)

In conventional speech enhancement, the noise and clean
speech spectra are dynamically estimated using previous in-
formation under some model assumptions. For instance in
OM-LSA approach (e.g., [8], [9]), its noise estimate is obtained
by averaging previous several frames of power spectra of noisy
speech, using a time-varying frequency-dependent smoothing
parameter that is adjusted by the signal presence probability
[9]. However, the relationship between the clean speech and
noise signals is non-linear and complicated. It is therefore
difficult to estimate the clean speech spectra with simple model
assumptions, especially for non-stationary noises.
On the other hand, the noise information of each utterance

was not specifically utilized in the basic DNN training. To en-
able this noise awareness, the DNN is fed with the noisy speech
samples augmented with an estimate of the noise. In this way,
the DNN can use additional on-line noise information to better

predict the clean speech. Also the estimated noise could be re-
garded as a specific code for adaptation, like a speaker code
in speaker adaptation [37]. Here the input vector of the DNN
is similar to what was adopted in [35] with a noise estimate
appended:

(10)

(11)

where represents the log-power spectral feature vector of
the current noisy speech frame , the window size of context
here is , and the noise is fixed over the utterance
and estimated using the first frames. Although this noise esti-
mator is simple and not always efficient in robust speech recog-
nition task [36], its effect in the speech enhancement task is not
evaluated. Furthermore, the dropout to the estimated noise
spliced in the input layer of DNNs could compensate for the
possible variability of the noise spectrum in other frames of the
current utterance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In [32], only four noise types, namely AWGN, Babble,
Restaurant and Street, from the Aurora2 database [44] were
used as the noise signals for synthesizing the noisy speech
training samples. In this study we increased the number of
noise types to 104 with another 100 environmental noises [49]1.
The spectrograms of these 104 noise types were presented in
Fig. 5. The clean speech data was still derived from the TIMIT
database [45]. All 4620 utterances from the training set of the
TIMIT database were corrupted with the abovementioned 104
noise types at six levels of SNR, i.e., 20 dB, 15 dB, 10 dB,
5 dB, 0 dB, and dB, to build a multi-condition training set,
consisting of pairs of clean and noisy speech utterances. This
resulted in a collection of about 2500 hours of noisy training
data (including one condition of clean training data) used to
train the DNN.
We randomly select part of them to construct a 100-hour

subset and a 625-hour training subset. Another 200 randomly
selected utterances from the TIMIT test set were used to con-
struct the test set for each combination of noise types and SNR
levels. As we only conduct the evaluation of mismatched noise
types in this paper, 15 other unseen noise types2, from the Au-
rora2 database [44] and the NOISEX-92 corpus [38], were used
for testing. It should be noted that most of the following experi-
ments were only evaluated on three typical noise types, namely,

1The 104 noise types for training are N1-N17: Crowd noise; N18-N29: Ma-
chine noise; N30-N43: Alarm and siren; N44-N46: Traffic and car noise; N47-
N55: Animal sound; N56-N69: Water sound; N70-N78: Wind; N79-N82: Bell;
N83-N85: Cough; N86: Clap; N87: Snore; N88: Click; N88-N90: Laugh; N91-
N92: Yawn; N93: Cry; N94: Shower; N95: Tooth brushing; N96-N97: Foot-
steps; N98: Door moving; N99-N100: Phone dialing. To compare with the re-
sults of [32], N101: AWGN, N102: Babble, N103: Restaurant, N104: Street,
were also used.
2The 15 unseen environment noises for evaluation are Exhibition, Car,

Buccaneer1, Buccaneer2, Destroyer engine, Destroyer ops, F16, Factory1, HF
channel, Leopard, Machine gun, and Pink. The first two noises are from the
Aurora2 database and the others are collected from the NOISEX-92 corpus.
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Fig. 5. Spectrograms of 104 noise types which were used as the noise signals
for synthesizing the noisy speech training samples.

Exhibition, Destroyer engine and HF channel, and the overall
evaluation on the whole 15 unseen noise types was given in
Section IV-D. An improved version of OM-LSA [8], [9], de-
noted as LogMMSE, was used for performance comparison
with our DNN approach.
All the clean speech and noise waveforms were down-sam-

pled to 8KHz. The frame length is 32 msec (256 samples) while
the frame shift is 16 msec (128 samples). Then the dimension
of the log-power spectral feature vector is 129. Perceptual
evaluation of speech quality (PESQ) [46], which has a high
correlation with subjective evaluation scores [46], was mostly
used as a compressive objective measure. PESQ is calculated
by comparing the enhanced speech with the clean reference
speech, and it ranges from to 4.5. We will only report
limited evaluation results based on other objective measures,
such as Short-Time Objective Intelligibility (STOI) score [47],
segmental SNR (SSNR, in dB) [40] and log-spectral distortion
(LSD, in dB) [40]. All of them are obtained by comparing
the enhanced speech with the clean reference speech. STOI is
highly relevant to the human speech intelligibility score ranging
from 0 to 1. SSNR denotes the degree noise reduction, while
LSD represents the speech distortion. Subjective measures such
as analysis of spectrograms and informal listening tests will
also be conducted for comparison.
The number of epoch for the RBM pre-training in each layer

was 20. The learning rate of pre-training was set as 0.0005. As
for the fine-tuning of the baseline, the learning rate was set to
0.1 for the first 10 epochs, then decreased by 10% after each
subsequent epoch. The momentum rate is set to 0.9. The
total number of epoch at this stage was 50. The mini-batch size
was set to 128. The weight decay coefficient in Eq. (3)

was 0.00001. As for the back-propagation algorithm improved
by the dropout regularization, the corruption levels are 0.1 for
the input layer and 0.2 at each hidden layer, respectively. The
learning rate of dropout was 1. The initial momentum rate of
dropout is 0.5 and then the rate increases to 0.9 in the first 10
epochs, after which it is kept as 0.9. The first frames of

each utterance were used for a noise estimate in NAT. Mean and
variance normalization was applied to the input and target fea-
ture vectors of the DNN, so the dynamic range of the log-power
spectra could be compressed to make them amenable to the
back-propagation training.
As in [32], the clean speech condition was specially treated.

Almost all speech enhancement methods have the side effect on
the detail of the clean speech spectra. Fortunately, this has little
impact on human listening. Nonetheless, to ensure that the clean
signal is not distorted, a detection operation for clean speech
condition, was conducted. It was easily implemented according
to the energy and zero-crossing rate [48] information. With this
simple step, better overall results could be obtained. So the re-
sults of the clean condition are omitted in the remainder of the
paper.
In the followings, we first tuned the parameters of different

DNN configurations, compared the proposed normalized clean
Log-power spectra with themask-based training targets and ver-
ified the different initialization schemes. Then the evaluations
of the proposed strategies demonstrated their effectiveness to
improve the generalization capacity to unseen noises. The sup-
pression against highly non-stationary noise was also found. Fi-
nally, overall performance comparisons on 15 unseen noises and
on real-world noises between the proposed method and the Log-
MMSE method were given.

A. Evaluations of Different DNN Configurations for Unseen
Noise Environments

The Number of Noise Types: In [32], we had trained a DNN
model using 100 hours of noisy speech data with only four
noise types, namely AWGN, Babble, Restaurant and Street
noises. To improve the generalization capability of the DNN
in mismatched noise conditions, we used additional 100 noise
types provided in [49] to train a DNN with the same amount
of training data and network configurations as in [32], namely,
11-frame expansion, 3 hidden layers, and 2048 hidden units for
each hidden layer. Table I lists a performance comparison of
different number of noise types using PESQ and LSD measures
on the test set at different SNR levels of three unseen noise
environments, namely Exhibition, Destroyer engine and HF
channel. It was clear that the model trained with 104 noise types
could achieve a better performance under the same amount
of training data and DNN configurations. For example for the
difficult HF channel case shown in Table I, the average LSD
over six different SNR levels (from dB to 20 dB) of three
unseen noise types was reduced from 6.90 to 5.73. And the
average PESQ was improved from 2.43 to 2.60.
The Depth of DNN: In Table II, we compare average PESQ

results at different SNRs across the abovementioned three un-
seen noise types using the conventional shallow neural networks
(SNNs) with only one hidden layer and . Here denoted
the number of hidden layers. The chosen DNN configurations
were 11-frame expansion, 2048 hidden units in each hidden
layer, and 100 hours of training data with 104 noise types. Two
types of SNNs, namely SNN1 with 512 hidden units and SNN2
with 6144 ( ) hidden units, both with 11-frame input,
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TABLE I
PESQ AND LSD COMPARISON BETWEEN MODELS TRAINED WITH FOUR NOISE
TYPES AND 104 NOISE TYPES ON THE TEST SET AT DIFFERENT SNRS OF

THREE UNSEEN NOISE ENVIRONMENTS

TABLE II
AVERAGE PESQ RESULTS AMONG SNNS AND ON THE TEST SET AT

DIFFERENT SNRS ACROSS THE SAME THREE UNSEEN NOISE TYPES

were compared. SNN2 ( ) was shown to be supe-
rior to SNN1 ( ), indicating that the speech com-
ponent could be separated more easily from its mixed signal
with wider hidden layer in the SNN. It was also observed that
DNNs with more than one hidden layer were demonstrated to
be more effective and achieved the best performance at

The improvement of over SNN2 which
had the same number of parameters with the indicated
that deeper neural network architectures had a better regression
capability.
The Length of Acoustic Context: In Fig. 6 we show the av-

erage PESQ results on the test set at different SNRs across the
abovementioned three mismatched noise types using input fea-
tures with different size of context expansion, ranging from 1 to
13 frames at a selective frame number increment. Other config-
urations of the DNN were 3 hidden layers, 2048 units at each
hidden layer, and 100 hours of training data with 104 noise
types. We could see the longer context used (no more than 11
frames), the better the performance. In addition, more acoustic
context information could reduce the discontinuity of the esti-
mated clean speech signals to obtain a better listening quality.
However using too many frames in context also degraded the
performance as irrelevant information with the current frame
was included.
The Size of Training Set: Fig. 7 compares the average PESQ

results of different training set size with 104 noise types on
the test set across the three mismatched noise types at different
SNRs. DNNs were configured with 3 hidden layers, 2048 units
in each hidden layer and 11-frame context expansion. Poor re-
sults were obtained if the data size was only one hour, indicating
that sufficient training samples are critical to obtain models with
a good generalization capability. There was a big jump of per-
formance when the training set size increased to 5 hours. The
performance was improved monotonically when the data size
increased until to 100 hours. The DNN trained with 625 hours

Fig. 6. Average PESQ results using different acoustic context on the test set
across three unseen noise types at different SNRs.

Fig. 7. Average PESQ results using different training set size with 104 noise
types on the test set across three unseen noise types at different SNRs.

TABLE III
PESQ RESULTS OF USING DIFFERENT TRAINING TARGETS: THE PROPOSED
NORMALIZED CLEAN LOG-POWER SPECTRA, DENOTED AS (A) IRM, DENOTED
AS (B) AND FFT-MASK, DENOTED AS (C) ON THE TEST SET AT DIFFERENT

SNRS OF THREE UNSEEN NOISE ENVIRONMENTS

data was slightly better than the DNN trained with 100 hours
data. The reason is that only 4-hour clean TIMIT corpus [45]
data and limited noise samples were used to construct the multi-
condition training data. The data redundancy will be more se-
vere when increasing the training data to 625 hours. We pointed
out that the richness of the clean speech samples and the noise
samples are the two crucial aspects to improve the generaliza-
tion capacity of DNNs.
Comparing with the Mask Based Training Targets: The ideal

ratio mask (IRM) and the short-time Fourier transform spectral
mask (FFT-MASK) were well defined in [50]. And they were
demonstrated to be superior to other existing training targets
[50], such as, ideal binary mask (IBM), target binary mask
(TBM), the short-time Fourier transform spectral magnitude
(FFT-MAG), etc. Following the practice in [50], the output
type of the DNN for predicting IRM is sigmoid, while the
output type for FFT-MASK is linear. Hence, Table III pre-
sented the PESQ results among the proposed normalized clean
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TABLE IV
PESQ, LSD AND SSNR RESULTS OF USING RBM PRE-TRAINING WITH 100
HOURS TRAINING DATA AND RANDOM INITIALIZATION ON THE TEST SET AT

DIFFERENT SNRS OF THREE UNSEEN NOISE ENVIRONMENTS

log-power spectra, denoted as (a), IRM, denoted as (b) and
FFT-MASK, denoted as (c) on the test set at different SNRs
of three unseen noise environments. The proposed normal-
ized clean Log-power spectra target was better than IRM and
FFT-MASK at all conditions in our experimental setup. IRM
and FFT-MASK got the almost the same performance. It should
be noted that the proposed clean Log-power spectra normalized
to mean zero and unit variance is crucial, which is different
from the FFT-MAG with the Log compression followed by the
percent normalization. And the MVN is better than the percent
normalization used in [50], because the calculated mean and
variance is more robust than the minimum and maximum value
used in the percent normalization. As for the IRM, it assumes
the independence between the noise and the speech in its testing
phase, although it can restrict the dynamical value range to
[0,1] in the training phase. Another main difference is that a set
of features, such as, amplitude modulation spectrogram (AMS),
mel-frequency cepstral coefficients (MFCC), etc, were adopted
as the input of DNNs in [50]. However, the normalized noisy
Log-power spectra was directly used as the input in this paper
to predict the clean Log-power spectra.
Comparing RBM Pre-Training with the Random Initializa-

tion: Table IV presented the PESQ, LSD and SSNR results
of using RBM pre-training with 100 hours training data and
random initialization on the test set at different SNRs of three
unseen noise environments. RBM pre-training was slightly
better than the random initialization at low SNR conditions
where the mapping function is more complicated. Noted that
the training data was 100 hours here. With more training data,
the back-propagation algorithm could not be stuck in the local
optimum. And the RBM pre-training will be more beneficial
when the training data is insufficient.

B. Evaluation of the Three Proposed Strategies for Unseen
Noise Environments

As shown in Eqs. (6)–(7), two GV equalization factors were
proposed to sharpen the over-smoothed estimated clean speech
spectra. In Table V we compare the PESQ results of the DNN
baseline and GV equalization using factors, and , on the
test set at different SNRs of the three unseen noise environ-
ments. The performance of GV equalization outperformed the
DNN baseline, especially at high SNRs. Using the dimension-
independent factor consistently outperformed that using the
dimension-dependent factor indicates that the same scaling
factor could be used for each frequency bin. Nonetheless, the
values of the factor of different bins were fluctuant, especially

TABLE V
PESQ RESULTS OF THE DNN BASELINE AND GV EQUALIZATION
USING FACTOR AND ON THE TEST SET AT DIFFERENT

SNRS OF THREE UNSEEN NOISE ENVIRONMENTS

TABLE VI
PESQ RESULTS OF THE DNN BASELINE AND USING NAT ON THE TEST SET

AT DIFFERENT SNRS OF THREE UNSEEN NOISE ENVIRONMENTS

at low (and high) frequencies. This might lead to unreasonable
stretch of the estimated speech spectra.
Table VI presents the PESQ results of using NAT on the test

set at different SNRs of three unseen noise environments. The
DNN using NAT outperformed the DNN baseline at almost all
conditions, e.g., an average PSEQ improvement of 0.06 in the
Destroy engine noise.
In Table VII, we compare the PESQ results among the noisy,

denoted as (a), the LogMMSE enhanced, denoted as (b), the
DNN baseline enhanced, denoted as (c), the dropout DNN en-
hanced, denoted as (d), the GV equalization DNN enhanced, de-
noted as (e), the dropout and GV equalization DNN enhanced,
denoted as (f) and the jointly dropout, GV equalization and NAT
DNN enhanced, denoted as (g), on the test set at different SNRs
in three unseen noise environments. The DNNs were trained by
100 hours of training data and 104 noise types, with 3 hidden
layers, 2048 units in each hidden layer, and 11-frame acoustic
context. Compared with the DNN baseline system where only
the basic DNN training procedure is applied, the system im-
proved by dropout training indeed showed better performances,
with average PESQ going from 2.45 in column (c) to 2.53 in
column (d) for HF channel noise, especially at low SNRs, with
PESQ going from 1.65 to 1.80 for dB inHF channel
noise.
Meanwhile, GV equalization also achieved significant im-

provements over the DNN baseline, with average PESQ going
from 2.54 in column (c) to 2.63 in column (e) for Exhibition
noise, especially at high SNRs, with PESQ going from 3.37 to
3.53 for dB in Exhibition noise. After jointly im-
proved byGV equalization and dropout, PESQ further increased
consistently, with average PESQ going from 2.54 in column (c)
to 2.67 in column (f) for Exhibition noise, from 2.80 in column
(c) to 2.90 in column (f) for Destroyer engine noise, and from
2.45 in column (c) to 2.58 in column (f) for HF channel noise.
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TABLE VII
PESQ COMPARISON ON THE TEST SET AT DIFFERENT SNRS OF UNSEEN NOISE ENVIRONMENTS, AMONG: (A) NOISY,(B) LOGMMSE

APPROACH, (C) DNN BASELINE, (D) DNN WITH DROPOUT, (E) DNN WITH GV EQUALIZATION, (F) DNN
WITH DROPOUT AND GV EQUALIZATION, AND (G) DNN WITH JOINT DROPOUT, GV EQUALIZATION AND NAT

By incorporating NAT on top of dropout and GV equalization
the best average PESQ results were achieved in columns (g) at
all three unseen noise types. It is clear that the three techniques
were complementary by a PESQ comparison from columns (c)
to (g). Furthermore, the best DNN system significantly outper-
formed the LogMMSE method (achieving only 2.30, 2.62 and
2.45 of average PESQ in columns (b) for all three noise types,
respectively) at different SNR levels of all noise conditions,
especially at low SNRs for the noise type with many non-sta-
tionary components, e.g., PESQ going from 1.69 in column (b)
to 2.24 in column (g) under Exhibition noise at dB.
The enhanced spectrograms from one noisy speech utterance

corrupted by Exhibition noise at SNR=5 dB using different
techniques were shown in Fig. 8. First, the LogMMSE method
played a limited role in reducing the non-stationary noise com-
ponents and there was still a lot of scatter noise in the enhanced
spectrogram, as shown in the two circled regions in Fig. 8(b).
Second, although the non-stationary noise components in the
noisy spectra shown in Fig. 8(a) disappeared after processing
by DNN shown in Fig. 8(c), some residual noise still existed,
as the Exhibition noise was unseen in the training set. By a
comparison from Fig. 8(c) to Fig. 8(g), we could observe that
dropout and NAT techniques could reduce this relatively sta-
tionary residue noise in Fig. 8(c). while the enhanced formant
spectra could be brightened using GV equalization. The final
spectrogram enhanced by DNN in Fig. 8(g) obviously seemed
more noiseless than that using LogMMSE in Fig. 8(b), with a
reference clean speech spectrogram at the bottom-right corner
of Fig. 8.

C. Suppression Against Non-Stationary Noise

It was of a great interest to examine the effect of DNN against
non-stationary noise, which is quite common in real-world noisy
speech. Fig. 9 shows an utterance example corrupted by Ma-
chine gun noise at dB. It was known to be diffi-
cult for almost all of the conventional techniques to track the
sudden increases of noise power, or they are overestimating the
noise energy resulting in speech distortion [41]. The LogMMSE
method did not work under this burst noise at all, achieving

which is almost the same as the PESQ value
of 1.85 for noisy speech. Even using the training data with only
four noise types, the trained DNN still had a strong suppression
ability against non-stationary noises, achieving .
Finally the DNN trained with 104 noise types obtained a good
effect in listening quality and with the best PESQ value of 2.78.
This demonstrated that using a DNN model, with an adequate

Fig. 8. Spectrograms of an utterance tested with Exhibition noise at
dB. (a) noisy speech ( ), (b) LogMMSE ( ),

(c) DNN baseline ( ), (d) improved by dropout ( ),
(e) improved byGV equalization ( ), (f) improved by dropout and
GV ( ), (g) jointly improved by dropout, NAT and GV equaliza-
tion ( ), and the clean speech ( ).

acoustic context (both in time and in frequency) and trained with
a large coverage of noise types, can well deal with the unseen
noise type, especially for the non-stationary noise components.
Fig. 10 shows an utterance example corrupted in succession

by different noise types at several speech segments. These
noise types were Exhibition, Buccaneer2, F16, Leopard, and
Destroyer engine. The DNN-enhanced spectrogram shown in
Fig. 10(a) successfully removed most of the noises while the
LogMMSE-enhanced spectrogram shown in Fig. 10(b) failed
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Fig. 9. Spectrograms of an utterance tested on Machine gun noise at
dB:with 104-noise DNN enhanced (upper left, ), LogMMSE

enhanced (upper right, ), 4-noise DNN enhanced (bottom left,
), and noisy speech (bottom right, ).

Fig. 10. Spectrograms of an utterance corrupted in succession by different
noise types tested on changing noise environments at dB: (a) DNN
enhanced ( ), (b) the LogMMSE enhanced ( ),
(c) noisy ( ), and (d) clean speech ( ).

to remove most of them and even led to a worse PESQ than the
noisy speech (PESQ going down from 2.05 to 1.46). This was
reasonable as the LogMMSE method predicted the noise in a
recursive averaging mode according to previous frames and it
was hard to track the potentially dramatic changes in non-sta-
tionary noises. However, the DNN model processed the noisy
spectrum in a frame-by-frame manner, and the relationship
between the clean speech and noise had been learned off-line.
As handling non-stationary noises is still an open research
problem in speech enhancement, our study gives a possible
research direction to solve it.

TABLE VIII
AVERAGE PESQ RESULTS AMONG THE LOGMMSE, THE DNN BASELINE
WITH 100 HOURS DATA, THE IMPROVED DNN WITH 100 HOURS DATA AND
THE IMPROVED DNN WITH 625 HOURS DATA ON THE TEST SET AT DIFFERENT

SNRS ACROSS THE WHOLE 15 UNSEEN NOISE TYPES

TABLE IX
AVERAGE STOI RESULTS AMONG THE LOGMMSE, THE DNN BASELINE WITH
100 HOURS DATA, THE IMPROVED DNN WITH 100 HOURS DATA AND THE
IMPROVED DNN WITH 625 HOURS DATA ON THE TEST SET AT DIFFERENT

SNRS ACROSS THE WHOLE 15 UNSEEN NOISE TYPES

D. Overall Evaluation

The overall evaluation results on the test set with the whole 15
unseen noise types [1], among the LogMMSE, the DNN base-
line with 100 hours of data, the improved DNN with 100 hours
of data and the improved DNNwith 625 hours of data, are listed
in Table VIII. All DNN configurations were fixed at
hidden layers, 2048 units at each hidden layer, and 11-frame
input. The DNN baseline could be improved effectively using
the three proposed techniques discussed in Section 3. It is inter-
esting to note that the best average PSEQ of 3.15 was achieved
with 625 hours of stereo training data. A larger training set was
shown to be slightly better than the situation with a smaller
training set of 100 hours (achieving an average PESQ of 3.12).
Moreover, we can see that the absolute PESQ gained between
our best DNN system and LogMMSE system (0.37) was even
comparable to that between LogMMSE system and unprocessed
noisy speech system (0.38), which was believed to be a signif-
icant improvement. Finally, by using more noise types and the
three proposed techniques, the PESQ improvements of the pro-
posed DNN approach over LogMMSE under unseen noise types
in Table VIII are also comparable to that under matched noise
types reported in [32]. Meanwhile, the STOI results to represent
the intelligibility of the enhanced speech were also presented in
Table IX. LogMMSE is slightly better than the noisy with an av-
erage STOI improvement from 0.81 to 0.82. The DNN baseline
trained with 100 hours got 0.86 STOI score on average. The pro-
posed strategies could further improve the performance. After
trained with 625 hours data, the STOI was improved to 0.88,
especially at low SNRs. As for the intelligent of the speech, we
may care more about the low SNR conditions. Although there is
a little performance degradation at dB, an absolute
0.13 STOI improvement compared with the LogMMSEmethod
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TABLE X
SUBJECTIVE PREFERENCE EVALUATION COMPARISON BETWEEN THE DNN
ENHANCED AND LOGMMSE ENHANCED SPEECH OF 32 REAL-WORLD

NOISY UTTERANCES IN ENGLISH OR OTHER LANGUAGES

Fig. 11. Spectrograms of a noisy utterance extracted from the movie Forrest
Gump with: improved DNN (left), LogMMSE (middle) and noisy speech
(right).

was obtained at dB. More results and demos can be
found at this website3.

E. Evaluation for Real-world Noise Environments

Table X shows the informal subjective preference evaluation
comparison between DNN enhanced and LogMMSE enhanced
speech for 32 real-world noisy utterances (22 spoken in Eng-
lish, and others spoken in other languages), which were col-
lected from some movies, lectures, or recorded directly by the
authors. They were assigned to ten subjects (five Chinese males
and five Chinese females.) for listening preference choices. An
average of 78% of the subjects preferred DNN enhanced speech.
For testing on English which is the same language as in the
TIMIT utterances used for training, the preference score was
81%, higher than the score of 75% for those utterances in dif-
ferent languages. Although DNNs did well in cross-language
testing, more research is needed to bridge this performance gap.
Finally to illustrate the speech quality obtained with real-

world noisy utterances we present testing results for an utterance
extracted from the famous movie Forrest Gump and spoken
by the well-known actor Tom Hanks playing the title role. In
Fig. 11 the spectrograms corresponding to the best DNNmodel,
the LogMMSE and the noisy speech are shown. It was observed
that the DNN model could still well handle the particular noisy
condition. Compared to the LogMMSE-enhanced speech shown
in the middle panel, the DNN-enhanced speech (shown in the
left panel) was seen to suppress non-stationary noise more and
resulted in less residual noise.

V. CONCLUSION

In this paper, a DNN-based framework for speech enhance-
ment is proposed. Among the various DNN configurations, a
large training set is crucial to learn the rich structure of the
mapping function between noisy and clean speech features.
It was found that the application of more acoustic context
information improves the system performance and makes the

3http://home.ustc.edu.cn/ xuyong62/demo/SE_DNN_taslp.html.

enhanced speech less discontinuous. Moreover, multi-condition
training with many kinds of noise types can achieve a good
generalization capability to unseen noise environments. By
doing so, the proposed DNN framework is also powerful to
cope with non-stationary noises in real-world environments.
An over-smoothing problem in speech quality was found in the
MMSE-optimized DNNs and one proposed post-processing
technique, called GV equalization, was effective in brightening
the formant spectra of the enhanced speech signals. Two im-
proved training techniques were further adopted to reduce the
residual noise and increase the performance. Compared with the
LogMMSE method, significant improvements were achieved
across different unseen noise conditions. Another interesting
observation was that the proposed DNN-based speech enhance-
ment system is quite effective for dealing with real-world noisy
speech in different languages and across different recording
conditions not observed during DNN training.
It should be noted that only the TIMIT corpus was used to

construct the clean speech training set in the current study.
Such a small amount of data cannot be expected to attain a
good coverage of different acoustic conditions, such as speaker
and language variabilities. In future studies, we would increase
the speech diversity by first incorporating clean speech data
from a rich collection of materials covering more languages
and speakers. Second, there are many factors in designing the
training set. We would utilize principles in experimental design
[54], [55] for multi-factor analysis to alleviate the requirement
of a huge amount of training data and still maintain a good
generalization capability of the DNN model. Third, some other
features, such as Gammatone filterbank power spectra [50],
Multi-resolution cochleagram feature [56], will be adopted
as in [50] to enrich the input information to DNNs. Finally, a
dynamic noise adaptation scheme will also be investigated for
the purpose of improving tracking of non-stationary noises.
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