Department of Electrical Engineering
 Assignment
 Date: 24/06/2020

Course Details

Course Title:
Electronic Circuit Design
Module: \qquad
Instructor:
Eng Mujtaba Ihsan
Total Marks: 50

Student Details

Name:
M.Salman shahid \qquad Student ID: \qquad

Q1.	(a) (b)	Discuss the darlington connection for multistage amplifiers. The input of a certain regulator increases by 4.5 V . As a result, the output voltage increases by 0.062 V . The nominal output is 40 V . Evaluate the line regulation in both $\%$ and in \%/V	$\begin{aligned} & \hline \text { Marks } \\ & 05+10 \end{aligned}$
			CLO 2
Q2.		Explain Colpitts and Hartley oscillators.	Marks 10
			CLO 2
Q3.	(a) (b)	Describe the idea behind class B amplifiers. Explain the types of voltage regulators and their purposes.	$\begin{aligned} & \text { Marks } \\ & 06+06 \end{aligned}$
			CLO 2
Q4.		Explain the working of Flash ADC.	Marks 05
			CLO 2
Q5.	(a) (b)	Differentiate between the following: Low pass \& high pass filters Active and passive filters	$\begin{aligned} & \hline \text { Marks } \\ & 04+04 \end{aligned}$
			CLO 2

Q1. (a) Discuss the darlington connection for multistage amplifiers.
Darlington Pair

- Darlington Pair is a cascading of two Biopolar Transistor.

- Used for High c
\& low resistance.
$\Delta V c c$
Explained :- Multi stage Darlington Pair Amplifier
It is used for
stages interconnecting common-emiter
Explained:stages with other emitter follower stages. The above circuit shows the darlington Pair multistage amplifier which was just discussed to meet the requirment of
of current gain $\left(A_{i}\right)$ \& input impedance
- It have high input impedence (Mת) ltigh current gain
low output impedance.
(b) The input of a certain regulator increases by 4.5 V . As a result, the output voltage increases by 0.062 V . The nominal output is 40 V . Evaluate the line regulation in both \% and in \%/V
b)

Given data:-

$$
\begin{aligned}
& \text { Input voltage }=V_{I N}=4.5 \\
& \text { Output voltage }=\Delta V_{\text {out }}=0.062 \mathrm{~V} \\
& \text { Nominal output }=4 \mathrm{VV}
\end{aligned}
$$

By using Line Regulation equation

$$
\begin{aligned}
& \text { Line regulation }=\left(\frac{\Delta V_{\text {out }}}{\Delta V_{I N}}\right) \times 100, \\
& =\frac{0.062}{4.5} \times 100 \% \\
& =1.3777 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { Line regulation }=\frac{\left(\Delta v_{o u t} / V_{\text {out }}\right) \times 100 \%}{\Delta V_{I N}} \\
& =\frac{0.062 / 40}{4.5} \times 100 \% \\
& =0.0344 \% / \mathrm{V}
\end{aligned}
$$

QQ.	Explain Colpitts and Hartley oscillators.	Marks

Intro to Colpitis Oscillator:- The
colpittis Oscillator Uses two Centre-tapped Capacitor in series with a Parallel inductor to form it's resonarice tank circuit Producing sinusiodal oscillation

Basic Colpitis Circuit:-

Colpitis Tank

Circuit Explanation:- The emitter terminal
connected to the junction of the taro is connected to the junction of the two $C_{1} \& C_{2}$ which are Connected in series and act as a voltage divider

When Power supply $\left(V_{S}\right)$ applied $C_{1} \& C_{2}$ charges up \& discharge through the coil L.
The oscillation across the capacitor are applied to the base-emitter junction and appear in the amplified at collector output

- Re \& R_{2} Provide $D C$ stablizing $O C$ bias for transistor in the normal manner while the additional capacitor act as a $O C$ Blocking
- RFC is used in the collector circuit to provide high reactance at the frequency oscillation.
- The required five feedback obtained for sustained undamped oscillation.

The Hartley Oscillator:with Parallel two inductive kids in series tank circuit capacitor to form resonance

Explanation:-
Hart leys Oscillator
 made from any Configuration that uses either a single tapped coil or a pair of series confected coils in parallel

When the circuit is oscillating the voltage at Point x (collector). relative to Point y emitter is 180° out -of - Phase with the voltage at Point z (base) relative to point y

Thus there is 180° Phase change in the voltage b/w base $\&$ collector and this along with the original 180° Phase Shift in the feedback loop. Provide the correct Phase relation.

The amount of feedback depend of the Position of the tapping point nearer to inductor. If this is moved feedback increased. collector the amount of

The frequency of oscillation increased or decreased by tuning capacitor.

Q3. (a) Describe the idea behind class B amplifiers.
(i) $3:-$

Idea behind class B amplifier:-
Class B amplifier is a type of power amplifier where the active device (transistor) conduct only for she half cycle of the input signal.

Since the transistor is switched off for half the input cycle, the active device dissipates less power \& hence the efficiency is improved.

It is clear from the circuit that the base of the transistor Q_{1} is not biased and the -ive half cycle of waveform is missing in output. It improves power efficiency creates a lot of distortion
raput will be available in the output and that is bad thing.
(b) Explain the types of voltage regulators and their purposes.
b) Types of Voltage Regulators:-

- Linear Voltage Regulator
- Switching voltage Regulator

Linear Voltage Regulator: If the transistor:
stays in active region or ohmic region or
linear region during voltage regulation then
the regulator is called Linear voltage regulat
When a load is connected, the changes
in either input or connected, the changes will result in
so that the current through the transistor
for the the output is maintained constant
it's current (collectorserais to be able to vary
it must bellector-emitter current in case of BjJj) must be operated in ohmic region.

During this process the regulator wastes a lot of power as the net voltage Classified into five Categories
Positive Adjustable Regulator
Negative Adjustable Regulator
fixed output Regulator
Tracking Regulator
floating Regulator
Switching Voltage regulator:- When the transistor operates in cut off state ξ Saturation State ie it switches b/w off state \& saturation state then the regulator called switching voltage regulator.

Switching regulator operates different than the (inear Regulator in the sense that the Pass transistor acts a s a switd it stays in oW state $\&$ off state.

1- lash $A D C$:-
A flash ADC is a type
of Analog-to-digital converter that uses a
linear voltage ladder with a comparator at each "rung" of the ladder to compare the input voltage to successive reference voltage.

flash ADC (Anatog to Digital Convertor)
The comparator output connected fo the input of a priority encoder which then Produce a binary output

Vet is a steady reference voltage Provided by a Precision voltage regulator
As the analog input voltage exceeds the reference voltage at each comparator the comparater sequentionally saturate to a high
state. so
Analog input

Digital outs

Q5.	Differentiate between the following:	Marks	
	(a)	Low pass \& high pass filters	$04+04$
	(b)	Active and passive filters	CLO 2

Difference b/w Low Pass \& High Pass
High Pass filter:filters:

It allows only high frequencies to pass through it while blocking low frequencies.
$L^{\text {Low Pass Filter:- }}$

It allows only low frequecies to pass through it and block high

Massive \& active filters:-

Passive filter:- It include only Passive components such as resistors, capacitors, inductors Passive filters are most responsive to a frequency range from roughly 100 Hz to 300 MHz The limitation on the lower end is a result of the fact that at low frequecies the inductance or capacitance would have to be quite large.

Active fitter:- Active filter's deals with very low frequencies (0 Hz) and they can Provide voltage gain (Passive filter cannot)
Active filter are used to design high order filters with out the use of inductors
Active Active filters are less suitable for high frequencies.

